P-Glycoprotein-Mediated Efflux Using a Rapidly Maturing Caco2 Clone (CLEFF4) in Only 5 Days without Requiring Modified Growth Medium

2020 ◽  
Vol 26 (1) ◽  
pp. 151-160
Author(s):  
Andrew Crowe

In drug discovery it is essential that one of the parameters tested for any new chemical entity is its affinity for human efflux systems, most notably P-glycoprotein (P-gp). These efflux systems affect not only rates of oral absorption but also rates of excretion through the liver, blood–brain barrier, and accumulation in potential target cells that upregulate efflux systems. Current methods to determine drugs’ P-gp transport potential include in vitro bidirectional transport studies, and the two most common cell lines used are Caco2 and MDR1-transfected MDCK models. Caco2 cells are human but slow growing and require more than 3 weeks to mature, while MDCK cells are canine, but when transfected with human P-gp become a rapid model of P-gp affinity. Our laboratory has generated a Caco2 subclone called CLEFF4 that is fully human, yet now approaches the rapid nature of the MDCK model. No special medium is required. We have shown, in as little as 5 days postseeding, high transepithelial electrical resistance values of more than 1000 Ω·cm2 plus P-gp expression more than threefold higher than that of 21-day-old cells. Currently tested drugs included rhodamine 123 (Rh123), vinblastine, and doxorubicin, and all drugs exhibited P-gp-mediated efflux that was inhibited by PSC833. By day 6, bidirectional transport of Rh123 was as potent as that of mature Caco2 cells, for use in comparative P-gp affinity studies. We now have a human P-gp model that is rapid and works without any need for special accelerating medium. We believe this could be a welcome addition to the testing regime of new chemical entities.

Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 707 ◽  
Author(s):  
Eva Martins ◽  
Vera Silva ◽  
Agostinho Lemos ◽  
Andreia Palmeira ◽  
Ploenthip Puthongking ◽  
...  

P-glycoprotein (P-gp) plays a crucial role in the protection of susceptible organs, by significantly decreasing the absorption/distribution of harmful xenobiotics and, consequently, their toxicity. Therefore, P-gp has been proposed as a potential antidotal pathway, when activated and/or induced. Knowing that xanthones are known to interact with P-gp, the main goal was to study P-gp induction or/and activation by six new oxygenated xanthones (OX 1-6). Furthermore, the potential protection of Caco-2 cells against paraquat cytotoxicity was also assessed. The most promising compound was further tested for its ability to increase P-gp activity ex vivo, using everted intestinal sacs from adult Wistar-Han rats. The oxygenated xanthones interacted with P-gp in vitro, increasing P-gp expression and/or activity 24 h after exposure. Additionally, after a short-incubation period, several xanthones were identified as P-gp activators, as they immediately increased P-gp activity. Moreover, some xanthones decreased PQ cytotoxicity towards Caco-2 cells, an effect prevented under P-gp inhibition. Ex vivo, a significant increase in P-gp activity was observed in the presence of OX6, which was selectively blocked by a model P-gp inhibitor, zosuquidar, confirming the in vitro results. Docking simulations between a validated P-gp model and the tested xanthones predicted these interactions, and these compounds also fitted onto previously described P-gp induction and activation pharmacophores. In conclusion, the in vitro, ex vivo, and in silico results suggest the potential of some of the oxygenated xanthones in the modulation of P-gp, disclosing new perspectives in the therapeutics of intoxications by P-gp substrates.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 388
Author(s):  
Yusuke Kono ◽  
Iichiro Kawahara ◽  
Kohei Shinozaki ◽  
Ikuo Nomura ◽  
Honoka Marutani ◽  
...  

For developing oral drugs, it is necessary to predict the oral absorption of new chemical entities accurately. However, it is difficult because of the involvement of efflux transporters, including P-glycoprotein (P-gp), in their absorption process. In this study, we conducted a comparative analysis on the inhibitory activities of seven P-gp inhibitors (cyclosporin A, GF120918, LY335979, XR9576, WK-X-34, VX-710, and OC144-093) to evaluate the effect of P-gp on drug absorption. GF120918, LY335979, and XR9576 significantly decreased the basal-to-apical transport of paclitaxel, a P-gp substrate, across Caco-2 cell monolayers. GF120918 also inhibited the basal-to-apical transport of mitoxantrone, a breast cancer resistance protein (BCRP) substrate, in Caco-2 cells, whereas LY335979 hardly affected the mitoxantrone transport. In addition, the absorption rate of paclitaxel after oral administration in wild-type mice was significantly increased by pretreatment with LY335979, and it was similar to that in mdr1a/1b knockout mice. Moreover, the absorption rate of topotecan, a BCRP substrate, in wild-type mice pretreated with LY335979 was similar to that in mdr1a/1b knockout mice but significantly lower than that in bcrp knockout mice. These results indicate that LY335979 has a selective inhibitory activity for P-gp, and would be useful for evaluating the contribution of P-gp to drug absorption.


2009 ◽  
Vol 29 (6) ◽  
pp. 1079-1083 ◽  
Author(s):  
Leon M Tai ◽  
A Jane Loughlin ◽  
David K Male ◽  
Ignacio A Romero

The clearance of amyloid beta (Aβ) from the brain represents a novel therapeutic target for Alzheimer's disease. Conflicting data exist regarding the contribution of adenosine triphosphatebinding cassette transporters to the clearance of Aβ through the blood-brain barrier. Therefore, we investigated whether Aβ could be a substrate for P-glycoprotein (P-gp) and/or for breast cancer resistance protein (BCRP) using a human brain endothelial cell line, hCMEC/D3. Inhibition of P-gp and BCRP increased apical-to-basolateral, but not basolateral-to-apical, permeability of hCMEC/D3 cells to 125l Aβ 1–40. Our in vitro data suggest that P-gp and BCRP might act to prevent the blood-borne Aβ 1–40 from entering the brain.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Lixia Ji ◽  
Lixia Cheng ◽  
Zhihong Yang

Objective.Lens osmotic expansion, provoked by overactivated aldose reductase (AR), is the most essential event of sugar cataract. Chloride channel 3 (Clcn3) is a volume-sensitive channel, mainly participating in the regulation of cell fundamental volume, and P-glycoprotein (P-gp) acts as its modulator. We aim to study whether P-gp and Clcn3 are involved in lens osmotic expansion of galactosemic cataract.Methods and Results.In vitro, lens epithelial cells (LECs) were primarily cultured in gradient galactose medium (10–60 mM), more and more vacuoles appeared in LEC cytoplasm, and mRNA and protein levels of AR, P-gp, and Clcn3 were synchronously upregulated along with the increase of galactose concentration. In vivo, we focused on the early stage of rat galactosemic cataract, amount of vacuoles arose from equatorial area and scattered to the whole anterior capsule of lenses from the 3rd day to the 9th day, and mRNA and protein levels of P-gp and Clcn3 reached the peak around the 9th or 12th day.Conclusion. Galactosemia caused the osmotic stress in lenses; it also markedly leads to the upregulations of AR, P-gp, and Clcn3 in LECs, together resulting in obvious osmotic expansion in vitro and in vivo.


2019 ◽  
Vol 442 ◽  
pp. 91-103 ◽  
Author(s):  
Albert A. De Vera ◽  
Pranav Gupta ◽  
Zining Lei ◽  
Dan Liao ◽  
Silpa Narayanan ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250371
Author(s):  
James W. McCormick ◽  
Lauren Ammerman ◽  
Gang Chen ◽  
Pia D. Vogel ◽  
John G. Wise

P-glycoprotein (P-gp) is a critical membrane transporter in the blood brain barrier (BBB) and is implicated in Alzheimer’s disease (AD). However, previous studies on the ability of P-gp to directly transport the Alzheimer’s associated amyloid-β (Aβ) protein have produced contradictory results. Here we use molecular dynamics (MD) simulations, transport substrate accumulation studies in cell culture, and biochemical activity assays to show that P-gp actively transports Aβ. We observed transport of Aβ40 and Aβ42 monomers by P-gp in explicit MD simulations of a putative catalytic cycle. In in vitro assays with P-gp overexpressing cells, we observed enhanced accumulation of fluorescently labeled Aβ42 in the presence of Tariquidar, a potent P-gp inhibitor. We also showed that Aβ42 stimulated the ATP hydrolysis activity of isolated P-gp in nanodiscs. Our findings expand the substrate profile of P-gp, and suggest that P-gp may contribute to the onset and progression of AD.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 135 ◽  
Author(s):  
Seung Han ◽  
Qili Lu ◽  
Kyeong Lee ◽  
Young Choi

P-glycoprotein (P-gp)-mediated efflux of docetaxel in the gastrointestinal tract mainly impedes its oral chemotherapy. Recently, LC478, a novel di-substituted adamantyl derivative, was identified as a non-cytotoxic P-gp inhibitor in vitro. Here, we assessed whether LC478 enhances the oral bioavailability of docetaxel in vitro and in vivo. LC478 inhibited P-gp mediated efflux of docetaxel in Caco-2 cells. In addition, 100 mg/kg of LC478 increased intestinal absorption of docetaxel, which led to an increase in area under plasma concentration-time curve (AUC) and absolute bioavailability of docetaxel in rats. According to U.S. FDA criteria (I, an inhibitor concentration in vivo tissue)/(IC50, inhibitory constant in vitro) >10 determines P-gp inhibition between in vitro and in vivo. The values 15.6–20.5, from (LC478 concentration in intestine, 9.37–12.3 μM)/(IC50 of LC478 on P-gp inhibition in Caco-2 cell, 0.601 μM) suggested that 100 mg/kg of LC478 sufficiently inhibited P-gp to enhance oral absorption of docetaxel. Moreover, LC478 inhibited P-gp mediated efflux of docetaxel in the ussing chamber studies using rat small intestines. Our study demonstrated that the feasibility of LC478 as an ideal enhancer of docetaxel bioavailability by P-gp inhibition in dose (concentration)-dependent manners.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 593 ◽  
Author(s):  
Jaeok Lee ◽  
Song Wha Chae ◽  
LianJi Ma ◽  
So Yeon Lim ◽  
Sarah Alnajjar ◽  
...  

P-glycoprotein (P-gp) is known to be involved in multidrug resistance (MDR) and modulation of pharmacokinetic (PK) profiles of substrate drugs. Here, we studied the effects of synthesized ferulic acid (FA) derivatives on P-gp function in vitro and examined PK alteration of paclitaxel (PTX), a well-known P-gp substrate drug by the derivative. Compound 5c, the FA derivative chosen as a significant P-gp inhibitor among eight FA candidates by in vitro results, increased PTX AUCinf as much as twofold versus the control by reducing PTX elimination in rats. These results suggest that FA derivative can increase PTX bioavailability by inhibiting P-gp existing in eliminating organs.


1994 ◽  
Vol 81 (4) ◽  
pp. 587-594 ◽  
Author(s):  
Jurgen Carl Walther Kiwit ◽  
Anja Hertel ◽  
Alexander E. Matuschek

✓ Resistance to multiple drugs is often observed in malignant gliomas. The authors used a microtiter tetrazolium test to analyze primary in vitro chemoresistance and chemosensitivity of 15 early cultures of human malignant glioma exposed to 50 µg/ml (1,4-amino-2-methyl-5-pyrimidinyl)-methyl-3-(2-chloroethyl)-3-nitrosourea (ACNU), 50 µg/ml cisplatin, 1 µg/ml vincristine, or combinations of these chemotherapeutic agents. Primary chemoresistance was observed in 87% of tumors for ACNU, in 87% for cisplatin, and in 83% for vincristine. All tumors were examined for expression of multidrug-resistant p-glycoprotein, a transport protein of 170,000 D, by means of immunohistochemical staining with the JSB-1 antibody on paraffinized tumor sections. Eight of 15 specimens (53%) showed positive staining for the monoclonal antibody. Primary chemoresistance was overcome by addition of the calcium antagonists verapamil or nimodipine to the cultures if the original tumor expressed p-glycoprotein (p < 0.01 for verapamil, p < 0.05 for nimodipine). In tumors not expressing p-glycoprotein, addition of calcium antagonists to the cell cultures did not influence primary chemoresistance. It is concluded from these data that addition of calcium antagonists to the adjuvant chemotherapy of malignant gliomas might overcome primary chemoresistance in tumors expressing the multidrugresistant phenotype.


Sign in / Sign up

Export Citation Format

Share Document