scholarly journals Effect of production temperature on thermal and mechanical properties of polystyrene–fly ash composites

2020 ◽  
Vol 29 ◽  
pp. 2633366X2091798 ◽  
Author(s):  
Ayse Bicer

This study was conducted to produce a novel construction material by using two different types of waste material consisting of fly ash and fragmented polypropylene (PP). These two materials were mixed on various ratios, and samples with smooth surface were obtained by compressing with 50 kg of weight after each mixture is heated on temperatures of 225°C, 250°C, and 275°C and poured into the molds. Thermal and mechanical tests were performed on the prepared samples. As a result, with the evaluation of two waste materials such as fly ash and PP, (i) the contamination caused by the waste materials will be prevented; (ii) as the fly ash rate increases, the thermal properties of samples produced under 225°C of temperature will be enhanced; (iii) as the fly ash rate increases, the thermal properties of samples produced under 225°C of temperature will be enhanced, and PP ratio and production temperature must be high in order to improve mechanical properties; (iv) the produced composite materials bear the low-cost heat, acoustics, and water insulation, while it will also be possible for the same to be used as coating materials on the walls and tiling in the buildings.

Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2607 ◽  
Author(s):  
Chenhua Jin ◽  
Chang Wu ◽  
Chengcheng Feng ◽  
Qingfang Zhang ◽  
Ziheng Shangguan ◽  
...  

Strain-hardening cementitious composite (SHCC) is a kind of construction material that exhibits multiple cracking and strain-hardening behaviors. The partial replacement of cement with fly ash is beneficial to the formation of the tensile strain-hardening property of SHCC, the increase of environmental greenness, and the decrease of hydration heat, as well as the material cost. This study aimed to develop a sustainable construction material using a high dosage of fly ash (no less than 70% of the binder material by weight). Based on the micromechanics analysis and particle size distribution (PSD) optimization, six mixes with different fly ash to cement ratios (2.4–4.4) were designed. The mechanical properties of the developed high-volume fly ash SHCCs (HVFA-SHCCs) were investigated through tensile tests, compressive tests, and flexural tests. Test results showed that all specimens exhibited multiple cracking and strain-hardening behaviors under tension or bending, and the compressive strength of the designed mixes exceeded 30MPa at 28 days, which is suitable for structural applications. Fly ash proved to be beneficial in the improvement of tensile and flexural ductility, but an extremely high volume of fly ash can provide only limited improvement. The HVFA-SHCC mix FA3.2 (with fly ash to binder ratio of about 76% by weight) designed in this study is suggested for structural applications.


2020 ◽  
pp. 002199832097519
Author(s):  
Fatma Naiiri ◽  
Allègue Lamis ◽  
Salem Mehdi ◽  
Zitoune Redouane ◽  
Zidi Mondher

Natural fibers are increasingly used in composites because of their low cost and good mechanical properties. Cement reinforced with natural fibersis contemplates as a new generation of construction materials with superior mechanical and thermal performance. This study of three sizes’effect of Doum palm fiber explores the mortar’s behavior reinforced with different fiber ratio. The aim is to determine the optimal addition to improve mechanical and thermal properties of natural fiber reinforced cements. Physical, mechanical and thermal properties of composite are examined. Tensile properties of Doum fibers are verified to determine their potential as reinforced material. Findings prove that the use of alkali-treated Doum fiber as reinforcement in cement mortar composite leads to the upgrading of the mechanical properties including thermo-physical properties against composites reinforced with raw fibers and control cement mortars. While, the compression and flexural strength of the cement mortar reinforced with alkali-treated Doum fiber with diameter 0.3 mm (CT3) are metered to be 11.11 MPa, 5.22 MPa, respectively for fiber content 0.5%. Additionally, based on thermo-physical tests, it is assessed that the thermal conductivity and diffusivity decrease for cement mortar reinforced with Doum fiber with diameter 0.2 mm (CT2).


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1923 ◽  
Author(s):  
Tereza Pavlu ◽  
Kristina Fortova ◽  
Jakub Divis ◽  
Petr Hajek

The main aim of this paper is to carry out the environmentally based enhancement of a concrete mixture containing recycled materials whilst considering natural resource consumption as well as mechanical and thermal property levels. The developed concrete is intended to be used in mortarless masonry wall structures. Ten concrete mixtures with different types and replacement rates of recycled masonry aggregate and recycled expanded polystyrene were prepared, and their mechanical and thermal properties were experimentally investigated. It was found that the use of recycled masonry aggregate led to better thermal properties while maintaining sufficient mechanical properties. On the contrary, the addition of recycled expanded polystyrene did not significantly affect the thermal properties of concrete, but the mechanical properties considerably declined. For this reason, the recycled masonry aggregate is suitable to use as an aggregate for concrete masonry blocks for wall structures.


2016 ◽  
Vol 717 ◽  
pp. 57-61
Author(s):  
Wei Liu ◽  
Zhong Cun Bao ◽  
Cheng Zhong Zong

Flexible fatigue properties is an important property of rubber, it can reflect the service life of rubber products. Different types of SSBR were used in the vulcanized rubber with NR contributed different to the flexible fatigue properties. In this paper, 5 different types of SSBR with special structure were used to study the mechanical properties, thermal properties and the flexible fatigue properties. In a result, with different types SSBR, the vulcanized rubber show different basic mechanical properties and flexible fatigue properties, but little effect to the hardness and stretching stress. Above all these SSBR, RC2564S is the best which contribute to flexible fatigue properties.


2018 ◽  
Vol 55 (3) ◽  
pp. 405-409 ◽  
Author(s):  
Marinela Barbuta ◽  
Alexandru Timu ◽  
Liliana Bejan ◽  
Roxana Dana Bucur

The experimental results obtained by studying the influence of different types of fibers on the mechanical properties of fly ash polymer concrete are presented in the paper. The general demand of using wastes found applicability in building material industry because some of them are beneficial in improving concrete properties. The waste additions type fly ash and fibers were incorporated in polymer concrete. The study focused on fibers type glass, polyester, metallic and cellulose. The mechanical properties such as compressive strength, flexural strength and split tensile strength were investigated having in view the type, dosage and length of fibers. The results show that fibers improved mechanical properties in comparison with that of polymer concrete without fibers, the test results being differently influenced by the factors which were considered.


2021 ◽  
Vol 56 (5) ◽  
pp. 179-185
Author(s):  
Omar A. Amin ◽  
S. A. Hassan ◽  
M. A. Sadek ◽  
M. A. Radwan ◽  
Hany A. Elazab

Epoxy resins are thermoset polymers that consist of epoxide groups in their molecular structure. It shows many attractive characteristics like strong adhesion, excellent mechanical strength, low shrinkage, excellent insulator, excellent chemical stability for acidic and basic environments, and microbial resistance due to the presence of hydroxyl groups and ether bonds and its three-dimensional structure. Many of these characteristics can be modified by adding strong bindings in the polymeric chain to give more improved characteristics. This research aims to prepare a composite material using epoxy resin and different types of fillers to achieve resistance to high kinetic energy impact. Experimental work is focused on preparing cured epoxy resin samples by using diglycidyl ether of bisphenol A (DGEBA) resin with tertiary amine as a hardener. In order to obtain different samples with different properties, we add different types of fillers, then mechanical tests are used to measure the mechanical properties of the samples. The results have proved that fiberglass is the best filler added to epoxy resins to improve its mechanical properties.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012234
Author(s):  
Yogeesha Pai ◽  
Dayananda Pai K ◽  
M Vijaya Kini

Abstract Polymer composites used in outdoor applications are exposed to environmental factors such as temperature and moisture which may affect the mechanical performance of the composites. In this study, the influence of moisture absorption on the mechanical properties of basalt-aramid/epoxy hybrid interply composites were evaluated. Two different types hybrid interply composites were taken for the investigation namely (301 A/03 B/301 A) and (451 A/03B/451 A). Composites were prepared using compression molding process and cut specimens were subjected to three different ageing environments for 180 days. Selected ageing conditions are, (i) ambient temperature ageing (ii) Sub-zero temperature ageing (−10°C) and (iii) Humid temperature ageing (40°C and 60% Relative humidity). Mechanical tests of the aged composites were carried out to analyse the behaviour of the composites. Moisture uptake of the specimens follow Fick’s law of diffusion with saturation absorption of 5.44%, 3.12% and 1.80% for ambient, sub-zero and humid specimens respectively. Results revealed that (301 a/03 B/301 a) aged composites possess higher mechanical properties compared to (451 a/03 B/451 a) aged composites. Highest reduction in properties were observed in ambient aged specimens followed by humid and sub-zero specimens. Scanning electron microscopy (SEM) was employed to observe the damage modes of the fractured specimens. Matrix deterioration, micro cracks and fibre fracture were the major types of failures observed in aged laminates.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2985
Author(s):  
Syyed Adnan Raheel Shah ◽  
Hassam Ahmad ◽  
Hatem Alhazmi ◽  
Muhammad Kashif Anwar ◽  
Fahad Iqbal

Self-Compacting Concrete (SCC) is a unique kind of concrete that tends to consolidate in terms of its weight. In this study, the prime target is to investigate the durability properties of SCC developed using eco-friendly economical waste binding materials as partial replacement to costly cement. This circular economy concept will not only help in the development of green concrete but will also help to improve the climatic condition by reducing the use and production of cement. An economical design methodology has been applied to produce environmentally friendly construction material. This research focuses on the application of Alum Sludge (AS) and Brick Dust (BD) in Self-Compacting Concrete (SCC). Both materials are waste materials containing binding properties. Performance of SCC developed using these two materials was tested considering mechanical properties of concrete using the destructive testing technique. Results showed that BD and AS can be utilized for up to 12% and 9% of replacement of cement, respectively, to achieve equal or higher compressive, tensile, and flexural strength. The application of BD and AS has demonstrated a subsequent improvement of SCC’s mechanical properties, i.e., compressive, tensile, and flexural strength. This study will help the production of composite green materials with the help of eco-friendly and economical waste materials for sustainable infrastructure development.


Author(s):  
Hassan Noorvand ◽  
Gabriel Arce ◽  
Marwa Hassan ◽  
Tyson Rupnow ◽  
Louay N. Mohammad

Engineered cementitious composites (ECCs) are a type of micromechanically-designed cementitious composite reinforced with a moderate volume fraction of short fiber, typically 2% by volume. ECCs form steady-state multiple cracking that considerably improves the tensile strength and ductility of traditional concrete. In this study, the properties of matrix and the interface of ECCs were tailored through the use of crumb rubber, different types of sand, and different replacement levels of cement with fly ash. The study examined the effect of sand replacement with crumb rubber (20% by volume), two types of river sands (coarse and fine), increasing the content of class F fly ash (up to 75% cement replacement), and low fiber content (1.75%) on the mechanical properties of ECCs. Compressive strength, uniaxial tensile, and third-point bending tests were performed to characterize the properties of ECC mixes. Experimental results demonstrated that increasing fly ash content and using crumb rubber favored ductility of the composites. However, higher fly ash contents and a low water-to-binder (W/B) ratio produced lower strengths as these limited the pozzolanic reaction of fly ash making it act partially as a filler. While incorporation of crumb rubber showed adverse effects on the tensile strength of ECC materials (up to 26% decrease), the tensile ductility of ECC materials improved significantly (up to 434% improvement). Moreover, the implementation of different types of sand produced minor effects on the mechanical properties of ECCs. Overall, a tradeoff between the strength and ductility of the composites was detected, which highlights the implications of matrix/interface tailoring in the overall performance of ECC.


Sign in / Sign up

Export Citation Format

Share Document