scholarly journals The Utilization of Recycled Masonry Aggregate and Recycled EPS for Concrete Blocks for Mortarless Masonry

Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1923 ◽  
Author(s):  
Tereza Pavlu ◽  
Kristina Fortova ◽  
Jakub Divis ◽  
Petr Hajek

The main aim of this paper is to carry out the environmentally based enhancement of a concrete mixture containing recycled materials whilst considering natural resource consumption as well as mechanical and thermal property levels. The developed concrete is intended to be used in mortarless masonry wall structures. Ten concrete mixtures with different types and replacement rates of recycled masonry aggregate and recycled expanded polystyrene were prepared, and their mechanical and thermal properties were experimentally investigated. It was found that the use of recycled masonry aggregate led to better thermal properties while maintaining sufficient mechanical properties. On the contrary, the addition of recycled expanded polystyrene did not significantly affect the thermal properties of concrete, but the mechanical properties considerably declined. For this reason, the recycled masonry aggregate is suitable to use as an aggregate for concrete masonry blocks for wall structures.

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3090
Author(s):  
Anita Ptiček Siročić ◽  
Ana Rešček ◽  
Zvonimir Katančić ◽  
Zlata Hrnjak-Murgić

The studied samples were prepared from polyethylene (PE) polymer which was coated with modified polycaprolactone (PCL) film in order to obtain bilayer films. Thin PCL film was modified with casein/aluminum oxide compound to enhance vapor permeability as well as mechanical and thermal properties of PE/PCL films. Casein/aluminum oxide modifiers were used in order to achieve some functional properties of polymer film that can be used in various applications, e.g., reduction of water vapor permeability (WVTR) and good mechanical and thermal properties. Significant improvement was observed in mechanical properties, especially in tensile strength as well as in water vapor values. Samples prepared with aluminum oxide particles indicated significantly lower values up to 60%, and samples that were prepared with casein and 5% Al2O3 showed the lowest WVTR value.


2021 ◽  
Vol 881 ◽  
pp. 149-156
Author(s):  
Mochamad Teguh ◽  
Novi Rahmayanti ◽  
Zakki Rizal

Building material innovations in various interlocking concrete block masonry from local materials to withstand lateral earthquake forces is an exciting issue in masonry wall research. The block hook has an advantage in the interlocking system's invention to withstand loads in the in-plane and out-of-plane orientations commonly required by the masonry walls against earthquake forces. Reviews of the investigation of in-plane and out-of-plane masonry walls have rarely been found in previous studies. In this paper, the results of a series of experimental tests with different interlocking models in resisting the simultaneous in-plane shear and out-of-plane bending actions on concrete blocks are presented. This paper presents a research investigation of various interlocking concrete blocks' mechanical properties with different hook thicknesses. Discussion of the trends mentioned above and their implications towards interlocking concrete block mechanical properties is provided.


2018 ◽  
Vol 33 (4) ◽  
pp. 435-450 ◽  
Author(s):  
Patrycja Bazan ◽  
Stanisław Kuciel ◽  
Mariola Sądej

The work has evaluated the possibility of the potential reinforcing of poly(oxymethylene) (POM) by basalt fibers (BFs) and influence of BFs addition on thermal properties. Two types of composites were produced by injection molding. There were 20 and 40 wt% long BFs content with an average length of 1 mm. The samples were made without using a compatibilizer. In the experimental part, the basic mechanical properties (tensile strength, modulus of elasticity, strain at break, flexural modulus, flexural strength, and deflection at 3.5% strain) of composites based on POM were determined. Tensile properties were also evaluated at three temperatures −20°C, 20°C, and 80°C. The density and Charpy impact of the produced composites were also examined. The influence of water absorption on mechanical properties was investigated. Thermal properties were conducted by the differential scanning calorimetry, thermal gravimetric analysis, and fourier transform infrared (FTIR)-attenuation total reflection (ATR) spectroscopy analysis. In order to make reference to the effects of reinforcement and determine the structure characteristics, scanning electron microscopy images were taken. The addition of 20 and 40 wt% by weight of fibers increases the strength and the stiffness of such composites by more than 30–70% in the range scale of temperature. Manufactured composites show higher thermal and dimensional stability in relation to neat POM.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chaitra Venkatesh ◽  
Yuanyuan Chen ◽  
Zhi Cao ◽  
Shane Brennan ◽  
Ian Major ◽  
...  

Abstract Poly (lactic acid)/halloysite nanotube (PLA/HNT) nanocomposites have been studied extensively over the past few years owing to the interesting properties of the polymer, PLA, and the nanoclay, HNT, individually and as composites. In this paper, the influence of the screw speed during extrusion was investigated and was found to have a significant impact on the mechanical and thermal performance of the extruded PLA/HNT nanocomposites. To determine the effect of screw speed on PLA/HNT nanocomposites, 5 and 10 wt% of HNTs were blended into the PLA matrix through compounding at screw speeds of 40, 80, and 140 rpm. Virgin PLA was compounded for comparison. The resultant polymer melt was quench cooled onto a calendar system to produce composite films which were assessed for mechanical, thermal, chemical, and surface properties. Results illustrate that in comparison to 40 and 80 rpm, the virgin PLA when compounded at 140 rpm, indicated a significant increase in the mechanical properties. The PLA/HNT 5 wt% nanocomposite compounded at 140 rpm showed significant improvement in the dispersion of HNTs in the PLA matrix which in turn enhanced the mechanical and thermal properties. This can be attributed to the increased melt shear at higher screw speeds.


2020 ◽  
pp. 002199832097519
Author(s):  
Fatma Naiiri ◽  
Allègue Lamis ◽  
Salem Mehdi ◽  
Zitoune Redouane ◽  
Zidi Mondher

Natural fibers are increasingly used in composites because of their low cost and good mechanical properties. Cement reinforced with natural fibersis contemplates as a new generation of construction materials with superior mechanical and thermal performance. This study of three sizes’effect of Doum palm fiber explores the mortar’s behavior reinforced with different fiber ratio. The aim is to determine the optimal addition to improve mechanical and thermal properties of natural fiber reinforced cements. Physical, mechanical and thermal properties of composite are examined. Tensile properties of Doum fibers are verified to determine their potential as reinforced material. Findings prove that the use of alkali-treated Doum fiber as reinforcement in cement mortar composite leads to the upgrading of the mechanical properties including thermo-physical properties against composites reinforced with raw fibers and control cement mortars. While, the compression and flexural strength of the cement mortar reinforced with alkali-treated Doum fiber with diameter 0.3 mm (CT3) are metered to be 11.11 MPa, 5.22 MPa, respectively for fiber content 0.5%. Additionally, based on thermo-physical tests, it is assessed that the thermal conductivity and diffusivity decrease for cement mortar reinforced with Doum fiber with diameter 0.2 mm (CT2).


e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Morteza Ghorbanzadeh Ahangari ◽  
Abdolhosein Fereidoon ◽  
Seyfolah Saedodin

AbstractIn the present work, the effect of different acid treatment times of singlewalled carbon nanotubes (SWNTs) on the mechanical and thermal properties of polypropylene (PP)/maleated polypropylene (PP-g-MA) nanocomposites was investigated. The acid treatment process was based on a mixture of concentrated sulphuric and nitric acids. The SWNTs were treated with the acid mixture for 1, 3, and 6 h. FTIR, Raman spectroscopy and TEM revealed the values of carboxylic groups, graphitization and morphology of acid treated SWNTs, respectively. The thermal and mechanical properties and the morphology of nanocomposites were investigated by tensile tests, DMTA, DSC, and SEM.


2011 ◽  
Vol 236-238 ◽  
pp. 288-291
Author(s):  
Guang Heng Wang ◽  
An Ning Zhou

Using different rank coals as filler, coal-soy protein isolate (SPI) composites were prepared by compression molding processing using glycerol as plasticizer. The structure of the coals used were characterized by Fourier transform infrared (FTIR), ultimate analysis, and surface functional group analysis. The effects of coal structure on the mechanical properties, water resistance, and thermal properties were investigated. The results showed that, in different rank coals, the atomic ratio of oxygen to carbon, carboxylic acid groups, phenolic hydroxyl groups, lactone bonds, and aliphatic chains decreased with coal rank. The strength, water resistance, and glass transition temperature of coal-SPI composites decreased with coal rank. Lower ran coal filler with more reactive functional groups caused the composites strong but brittle. While, higher rank coals provide poor mechanical properties for the composites.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1893 ◽  
Author(s):  
Přemysl Menčík ◽  
Radek Přikryl ◽  
Ivana Stehnová ◽  
Veronika Melčová ◽  
Soňa Kontárová ◽  
...  

This paper explores the influence of selected commercial plasticizers structure, which are based on esters of citric acid, on mechanical and thermal properties of Poly(3-hydroxybutyrate)/Poly(lactic acid)/Plasticizer biodegradable blends. These plasticizers were first tested with respect to their miscibility with Poly(3-hydroxybutyrate)/Poly(lactic acid) (PHB/PLA) blends using a kneading machine. PHB/PLA/plasticizer blends in the weight ratio (wt %) of 60/25/15 were then prepared by single screw and corotating meshing twin screw extruders in the form of filament for further three-dimensional (3D) printing. Mechanical, thermal properties, and shape stability (warping effect) of 3D printed products can be improved just by the addition of appropriate plasticizer to polymeric blend. The goal was to create new types of eco-friendly PHB/PLA/plasticizers blends and to highly improve the poor mechanical properties of neat PHB/PLA blends (with majority of PHB) by adding appropriate plasticizer. Mechanical properties of plasticized blends were then determined by the tensile test of 3D printed test samples (dogbones), as well as filaments. Measured elongation at break rapidly enhanced from 21% for neat non-plasticized PHB/PLA blends (reference) to 328% for best plasticized blends in the form of filament, and from 5% (reference) to 187% for plasticized blends in the form of printed dogbones. The plasticizing effect on blends was confirmed by Modulated Differential Scanning Calorimetry. The study of morphology was performed by the Scanning Electron Microscopy. Significant problem of plasticized blends used to be also plasticizer migration, therefore the diffusion of plasticizers from the blends after 15 days of exposition to 110 °C in the drying oven was investigated as their measured weight loss. Almost all of the used plasticizers showed meaningful positive softening effects, but the diffusion of plasticizers at 110 °C exposition was quite extensive. The determination of the degree of disintegration of selected plasticized blend when exposed to a laboratory-scale composting environment was executed to roughly check the “biodegradability”.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 336 ◽  
Author(s):  
Sylwia Członka ◽  
Anna Strąkowska ◽  
Krzysztof Strzelec ◽  
Agnieszka Adamus-Włodarczyk ◽  
Agnė Kairytė ◽  
...  

Rigid polyurethane foams (RPUFs) were successfully modified with different weight ratios (0.5 wt%, 1.5 wt% and 5 wt%) of APIB-POSS and AEAPIB-POSS. The resulting foams were evaluated by their processing parameters, morphology (Scanning Electron Microscopy analysis, SEM), mechanical properties (compressive test, three-point bending test and impact strength), viscoelastic behavior (Dynamic Mechanical Analysis, DMA), thermal properties (Thermogravimetric Analysis, TGA, and thermal conductivity) and application properties (contact angle, water absorption and dimensional analysis). The results showed that the morphology of modified foams is significantly affected by the type of the filler and filler content, which resulted in inhomogeneous, irregular, large cell shapes and further affected the physical and mechanical properties of resulting materials. RPUFs modified with APIB-POSS represent better mechanical and thermal properties compared to the RPUFs modified with AEAPIB-POSS. The results showed that the best results were obtained for RPUFs modified with 0.5 wt% of APIB-POSS. For example, in comparison with unfilled foam, compositions modified with 0.5 wt% of APIB-POSS provide greater compression strength, better flexural strength and lower water absorption.


2005 ◽  
Vol 14 (3) ◽  
pp. 096369350501400
Author(s):  
Jae-Seol Lee ◽  
Toyohiko Yano

In order to examine the effects of sintering additives on microstructure and mechanical properties of SiC short-fibre-reinforced SiC composites, a ZrO2-Y2O3-Al2O3 additive system was applied in this study. The aim of this study was to investigate the influence of the sintering additives on the mechanical properties of SiC/SiC composites using Tyranno SA short fibres. A ZrO2-Y2O3-Al2O3 mixture was chosen for fabrication of the short-fibre-reinforced SiC composites as sintering additives because of their relatively low densification temperature and non-reactivity with SiC. Compare with the previous results, the influence of sintering additives on the mechanical and thermal properties of the SiC/SiC composites was discussed.


Sign in / Sign up

Export Citation Format

Share Document