scholarly journals Cytochemical characterization of secretory and cell surface glycoconjugates by light and electron microscopy.

1979 ◽  
Vol 27 (8) ◽  
pp. 1182-1184 ◽  
Author(s):  
S S Spicer ◽  
P L Sannes ◽  
T Katsuyama

Lectin methods have increased the capacity for histochemical characterization and differentiation of glycoproteins and have demonstrated, for example, greater reactivity of gastrointestinal than of respiratory tract secretions with the periodate-concanavalin A-horseradish peroxidase method for localizing mannose-rich glycoprotein. Application of a battery of ultrastructural cytochemical methods with specificity for the constituents characteristically present in the complex carbohydrates provides knowledge of the distribution of the various recognizable types of glycoconjugates in tissues and cells showing, for example, marked differences in glycoconjugates of the apical compared with the basolateral plasmalemma in a given cell type and differences between apical plasmalemmas or basement membranes of different cell types. Such information raises questions as to the biologic significance of the different complex carbohydrates in various sites and, hopefully, will lead to a clearer understanding of their physiologic roles.

2004 ◽  
Vol 64 (3a) ◽  
pp. 511-522 ◽  
Author(s):  
S. A. de Souza ◽  
A. M. Leal-Zanchet

The present study aims at providing a detailed description of the histology, as well as the first histochemical characterization, of the secretory cells of the epidermis, pharynx, and copulatory organs of Choeradoplana iheringi, in order to give further support to studies on the physiology of these organs. The secretory cells are distinguished on the basis of secretion morphology and its staining properties, using trichrome methods and histochemical reactions. Four cell types open through the epidermis of Ch. iheringi, three of them secreting basic protein and a fourth containing glycosaminoglycan mucins. The epidermal lining cells store glycogen. In the pharynx, four secretory cell types were distinguished. Two types produce glycoprotein, a third type secretes basic protein, and another one produces glycosaminoglycan mucins. In the male copulatory organs, the prostatic vesicle receives four secretory cell types containing basic protein, except for one type which produces glycoprotein. The two secretory cell types opening into the male atrium secrete, respectively, glycoprotein, and glycosaminoglycan mucins. In the female copulatory organs, the female atrium and its proximal diverticulum, the vagina, receive two types of secretory cells producing, respectively, basic protein and glycosaminoglycan mucins. Another secretory cell type constitutes the so-called shell glands which open into the common glandular duct, secreting basic protein. The lining cells of the male and female atria produce a mucous secretion containing glycosaminoglycans. In addition, the lining epithelium of the female atrium presents an apical secretion of a proteic nature. The occurrence of a kind of spermatophore is reported for the first time for a species of Choeradoplana. This structure is located in the male or female atria in different specimens, and characterized by erythrophil, xanthophil, and/or mixed secretions associated with sperm.


Author(s):  
Aaron Scott ◽  
Lorena Sueiro Ballesteros ◽  
Marston Bradshaw ◽  
Chisato Tsuji ◽  
Ann Power ◽  
...  

Objective: Extracellular vesicles (EVs) facilitate molecular transport across extracellular space, allowing local and systemic signaling during homeostasis and in disease. Extensive studies have described functional roles for EV populations, including during cardiovascular disease, but the in vivo characterization of endogenously produced EVs is still in its infancy. Because of their genetic tractability and live imaging amenability, zebrafish represent an ideal but under-used model to investigate endogenous EVs. We aimed to establish a transgenic zebrafish model to allow the in vivo identification, tracking, and extraction of endogenous EVs produced by different cell types. Approach and Results: Using a membrane-tethered fluorophore reporter system, we show that EVs can be fluorescently labeled in larval and adult zebrafish and demonstrate that multiple cell types including endothelial cells and cardiomyocytes actively produce EVs in vivo. Cell-type specific EVs can be tracked by high spatiotemporal resolution light-sheet live imaging and modified flow cytometry methods allow these EVs to be further evaluated. Additionally, cryo electron microscopy reveals the full morphological diversity of larval and adult EVs. Importantly, we demonstrate the utility of this model by showing that different cell types exchange EVs in the adult heart and that ischemic injury models dynamically alter EV production. Conclusions: We describe a powerful in vivo zebrafish model for the investigation of endogenous EVs in all aspects of cardiovascular biology and pathology. A cell membrane fluorophore labeling approach allows cell-type specific tracing of EV origin without bias toward the expression of individual protein markers and will allow detailed future examination of their function.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Houri Hintiryan ◽  
Ian Bowman ◽  
David L. Johnson ◽  
Laura Korobkova ◽  
Muye Zhu ◽  
...  

AbstractThe basolateral amygdalar complex (BLA) is implicated in behaviors ranging from fear acquisition to addiction. Optogenetic methods have enabled the association of circuit-specific functions to uniquely connected BLA cell types. Thus, a systematic and detailed connectivity profile of BLA projection neurons to inform granular, cell type-specific interrogations is warranted. Here, we apply machine-learning based computational and informatics analysis techniques to the results of circuit-tracing experiments to create a foundational, comprehensive BLA connectivity map. The analyses identify three distinct domains within the anterior BLA (BLAa) that house target-specific projection neurons with distinguishable morphological features. We identify brain-wide targets of projection neurons in the three BLAa domains, as well as in the posterior BLA, ventral BLA, posterior basomedial, and lateral amygdalar nuclei. Inputs to each nucleus also are identified via retrograde tracing. The data suggests that connectionally unique, domain-specific BLAa neurons are associated with distinct behavior networks.


2021 ◽  
Author(s):  
Nageswari Yarravarapu ◽  
Rohit Sai Reddy Konada ◽  
Narek Darabedian ◽  
Nichole J. Pedowtiz ◽  
Soumya N. Krishnamurthy ◽  
...  

Glycan binding often mediates extracellular macromolecular recognition events. Accurate characterization of these binding interactions can be difficult because of dissociation and scrambling that occur during purification and analysis steps. Use of photocrosslinking methods has been pursued to covalently capture glycan-dependent interactions in situ however use of metabolic glycan engineering methods to incorporate photocrosslinking sugar analogs is limited to certain cell types. Here we report an exo-enzymatic labeling method to add a diazirine-modified sialic acid (SiaDAz) to cell surface glycoconjugates. The method involves chemoenzymatic synthesis of diazirine-modified CMP-sialic acid (CMP-SiaDAz), followed by sialyltransferase-catalyzed addition of SiaDAz to desialylated cell surfaces. Cell surface SiaDAz-ylation is compatible with multiple cell types and is facilitated by endogenous extracellular sialyltransferase activity present in Daudi B cells. This method for extracellular addition of α2-6-linked SiaDAz enables UV-induced crosslinking of CD22, demonstrating the utility for covalent capture of glycan-mediated binding interactions.


2020 ◽  
Author(s):  
Yupeng Wang ◽  
Rosario B. Jaime-Lara ◽  
Abhrarup Roy ◽  
Ying Sun ◽  
Xinyue Liu ◽  
...  

AbstractWe propose SeqEnhDL, a deep learning framework for classifying cell type-specific enhancers based on sequence features. DNA sequences of “strong enhancer” chromatin states in nine cell types from the ENCODE project were retrieved to build and test enhancer classifiers. For any DNA sequence, sequential k-mer (k=5, 7, 9 and 11) fold changes relative to randomly selected non-coding sequences were used as features for deep learning models. Three deep learning models were implemented, including multi-layer perceptron (MLP), Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). All models in SeqEnhDL outperform state-of-the-art enhancer classifiers including gkm-SVM and DanQ, with regard to distinguishing cell type-specific enhancers from randomly selected non-coding sequences. Moreover, SeqEnhDL is able to directly discriminate enhancers from different cell types, which has not been achieved by other enhancer classifiers. Our analysis suggests that both enhancers and their tissue-specificity can be accurately identified according to their sequence features. SeqEnhDL is publicly available at https://github.com/wyp1125/SeqEnhDL.


2019 ◽  
Vol 9 (7) ◽  
pp. 904-913
Author(s):  
Bing Yan ◽  
Ruining Liang ◽  
Meng Ji ◽  
Qi-Qige Wuyun ◽  
Weijun Guan ◽  
...  

Of all the significant researches that have taken place in isolation, culture and characterization of mesenchymal stem cells (MSCs), the field of kidney-derived mesenchymal stem cells (KMSCs) in Tibetan mastiff is still a blank. Therefore, the purpose of this study is to isolate, culture and characterize the Tibetan mastiff KMSCs. The KMSCs were successfully isolated from one-day year old Tibetan mastiff kidney, cultured for 16 passages and distinguished by two methods: immunofluorescence staining and RT-PCR. The Tibetan mastiff KMSCs expressed specific surface marker genes (VIM, CD44, FN1, CD90, CD109, CD73, FN1) and kidney marker gene PAX2. The proliferation ability of Tibetan mastiff KMSCs was measured through cell count and clonality. Furthermore, cells differentiated into different cell types (hepatocellular cells, osteogenic cells, adipogenic cells and chondrogenic cells) under special induced medium, and the marker genes of induced cells were identified with Immunofluorescence staining and RT-PCR. All of these results indicated that the Tibetan mastiff KMSCs were obtained successfully, which possessed certain characteristics of multipotent stem cells. Therefore, MSCs in Tibetan mastiff kidney hold potential for clinical applications for regenerative therapy and their further studies are waiting to be required to investigate their functions.


1985 ◽  
Vol 101 (4) ◽  
pp. 1442-1454 ◽  
Author(s):  
P Cowin ◽  
H P Kapprell ◽  
W W Franke

Desmosomal plaque proteins have been identified in immunoblotting and immunolocalization experiments on a wide range of cell types from several species, using a panel of monoclonal murine antibodies to desmoplakins I and II and a guinea pig antiserum to desmosomal band 5 protein. Specifically, we have taken advantage of the fact that certain antibodies react with both desmoplakins I and II, whereas others react only with desmoplakin I, indicating that desmoplakin I contains unique regions not present on the closely related desmoplakin II. While some of these antibodies recognize epitopes conserved between chick and man, others display a narrow species specificity. The results show that proteins whose size, charge, and biochemical behavior are very similar to those of desmoplakin I and band 5 protein of cow snout epidermis are present in all desmosomes examined. These include examples of simple and pseudostratified epithelia and myocardial tissue, in addition to those of stratified epithelia. In contrast, in immunoblotting experiments, we have detected desmoplakin II only among cells of stratified and pseudostratified epithelial tissues. This suggests that the desmosomal plaque structure varies in its complement of polypeptides in a cell-type specific manner. We conclude that the obligatory desmosomal plaque proteins, desmoplakin I and band 5 protein, are expressed in a coordinate fashion but independently from other differentiation programs of expression such as those specific for either epithelial or cardiac cells.


1987 ◽  
Vol 105 (2) ◽  
pp. 965-975 ◽  
Author(s):  
L M Wakefield ◽  
D M Smith ◽  
T Masui ◽  
C C Harris ◽  
M B Sporn

Scatchard analyses of the binding of transforming growth factor-beta (TGF-beta) to a wide variety of different cell types in culture revealed the universal presence of high affinity (Kd = 1-60 pM) receptors for TGF-beta on every cell type assayed, indicating a wide potential target range for TGF-beta action. There was a strong (r = +0.85) inverse relationship between the receptor affinity and the number of receptors expressed per cell, such that at low TGF-beta concentrations, essentially all cells bound a similar number of TGF-beta molecules per cell. The binding of TGF-beta to various cell types was not altered by many agents that affect the cellular response to TGF-beta, suggesting that modulation of TGF-beta binding to its receptor may not be a primary control mechanism in TGF-beta action. Similarly, in vitro transformation resulted in only relatively small changes in the cellular binding of TGF-beta, and for those cell types that exhibited ligand-induced down-regulation of the receptor, down-regulation was not extensive. Thus the strong conservation of binding observed between cell types is also seen within a given cell type under a variety of conditions, and receptor expression appears to be essentially constitutive. Finally, the biologically inactive form of TGF-beta, which constitutes greater than 98% of autocrine TGF-beta secreted by all of the twelve different cell types assayed, was shown to be unable to bind to the receptor without prior activation in vitro. It is proposed that this may prevent premature interaction of autocrine ligand and receptor in the Golgi apparatus.


1992 ◽  
Vol 40 (10) ◽  
pp. 1535-1545 ◽  
Author(s):  
J G Kleinman ◽  
J L Bain ◽  
C Fritsche ◽  
D A Riley

Rat inner medullary collecting duct (IMCD) secretes substantial amounts of H+. However, carbonic anhydrase (CA), a concomitant of H+ secretion, has been generally reported absent in this segment. To reexamine this problem, we investigated CA and the morphological phenotypes of cells comprising the IMCD by CA histochemistry, using a modified Hansson technique with light and electron microscopy. Throughout the medulla, tubule cells exhibit histochemical CA activity. In the initial third of the inner medulla, a small proportion have features of intercalated cells and demonstrate some degree of CA activity. However, the majority population in the early portions of the IMCD appears to consist of principal cells. These also show CA staining of widely variable intensity, both among and within cells. A third cell type, previously called "IMCD cells", appears in the middle portion of the IMCD and is the only cell type present near the papilla tip. In contrast to previous reports, these "IMCD cells" have histochemical CA staining, also of highly variable intensity. These results demonstrate that stainable carbonic anhydrase to support acidification is present throughout the rat IMCD, both in intercalated cells and in some cells clearly not of this type. Therefore, the presence of CA is not specific for the intercalated cell type and suggests that other cell types may participate in acid secretion in IMCD.


Sign in / Sign up

Export Citation Format

Share Document