scholarly journals Electron microscopy of gold-labeled human and equine chromosomes.

1989 ◽  
Vol 37 (9) ◽  
pp. 1443-1447 ◽  
Author(s):  
P E Messier ◽  
R Drouin ◽  
C L Richer

We present an immunochemical technique for the detection of 5-bromo-2'-deoxyuridine (BrdU) incorporated discontinuously into the chromosomal DNA. A monoclonal anti-BrdU antibody and a protein A-gold complex were used to produce chromosome banding of human and equine chromosomes, specific for electron microscopy (EM). Well-defined bands, symmetry of sister chromatids, concordance between homologues, and band patterns similar to those observed by light microscopy facilitate chromosome identification and karyotyping. From prophase to late metaphase, chromosomes condense and bands appear to fuse. The fusion appears to be owing to chromatin reorganization. Our results underline the value of using immunogold reagents, which are ideal probes for antigen localization on chromosomes.

1986 ◽  
Vol 103 (4) ◽  
pp. 1145-1151 ◽  
Author(s):  
L M Lica ◽  
S Narayanswami ◽  
B A Hamkalo

The experiments described were directed toward understanding relationships between mouse satellite DNA, sister chromatid pairing, and centromere function. Electron microscopy of a large mouse L929 marker chromosome shows that each of its multiple constrictions is coincident with a site of sister chromatid contact and the presence of mouse satellite DNA. However, only one of these sites, the central one, possesses kinetochores. This observation suggests either that satellite DNA alone is not sufficient for kinetochore formation or that when one kinetochore forms, other potential sites are suppressed. In the second set of experiments, we show that highly extended chromosomes from Hoechst 33258-treated cells (Hilwig, I., and A. Gropp, 1973, Exp. Cell Res., 81:474-477) lack kinetochores. Kinetochores are not seen in Miller spreads of these chromosomes, and at least one kinetochore antigen is not associated with these chromosomes when they were subjected to immunofluorescent analysis using anti-kinetochore scleroderma serum. These data suggest that kinetochore formation at centromeric heterochromatin may require a higher order chromatin structure which is altered by Hoechst binding. Finally, when metaphase chromosomes are subjected to digestion by restriction enzymes that degrade the bulk of mouse satellite DNA, contact between sister chromatids appears to be disrupted. Electron microscopy of digested chromosomes shows that there is a significant loss of heterochromatin between the sister chromatids at paired sites. In addition, fluorescence microscopy using anti-kinetochore serum reveals a greater inter-kinetochore distance than in controls or chromosomes digested with enzymes that spare satellite. We conclude that the presence of mouse satellite DNA in these regions is necessary for maintenance of contact between the sister chromatids of mouse mitotic chromosomes.


1986 ◽  
Vol 34 (5) ◽  
pp. 569-575 ◽  
Author(s):  
M Bendayan ◽  
M A Duhr

A modification in the protein A-gold immunocytochemical technique has been introduced for amplification of the labeling. This modification consists of performing additional incubation steps with an anti-protein A antibody and the protein A-gold complex. The original antigen-antibody-protein A-gold complex was further incubated with an antibody directed against protein A and then, in a fourth step, again with protein A-gold. This multiple-step protocol results in significant enhancement of the original signal. The modified technique can be applied to either light or electron microscopy protein A-gold immunocytochemistry. The advantage of such an approach is double: it allows for either amplification of the labeling when the original signal is of low intensity or use of highly diluted antibody solutions. The modification introduced was thus found to significantly enhance the efficiency of the technique.


1992 ◽  
Vol 40 (3) ◽  
pp. 435-441 ◽  
Author(s):  
J R Thorpe

A method for sequential protein A-gold immunolabeling is described whereby the binding of second gold probe to the first antibody-protein A-gold complex is reduced to acceptably minimal levels. Immunolabeling of thin sections of embedded pituitary tissue was used as a model system. After an initial immunolabeling for prolactin, sections were incubated in normal serum (rabbit) followed by a monovalent fragment of protein A. These latter two incubations reduced artifactual second gold probe label over prolactin-labeled secretory granules to minimal levels (much less than 1 particle per granule) when sections were subsequently immunolabeled with normal serum. The combination of normal serum and protein A fragment incubations saturates IgG and protein A binding sites on the first antibody-gold probe complex. The latter is thereafter unable to bind further IgG (and thus gold probe) because of the monovalent nature of the protein A fragment. It is suggested that this methodology may be extended to multiple immunolabeling procedures for electron microscopy. In addition, when used before single labeling this method may be an effective way to minimize nonspecific IgG binding in cases where the tissue or antibody under study may be a problem.


1985 ◽  
Vol 77 (1) ◽  
pp. 143-153
Author(s):  
C.J. Harrison ◽  
E.M. Jack ◽  
T.D. Allen ◽  
R. Harris

A technique has been developed to examine the same G-banded human metaphase chromosomes, first in the light microscope and then in the scanning electron microscope (SEM). A structural involvement in chromosome banding was confirmed by a positional correlation between the G-positive bands observed in the light microscope and the circumferential grooves between the quaternary coils of the metaphase chromosomes, observed in the SEM. In further support of this the regions between the grooves showed a positional relationship with the G-negative or reverse (R) bands. The examination of slightly extended metaphase chromosomes in the light microscope demonstrated that the G-banding pattern corresponded to that described by the Paris nomenclature for metaphase chromosomes. The arrangement of the circumferential grooves of the same chromosomes, observed in the SEM, was shown to relate to that described by the Paris nomenclature for prometaphase chromosomes. Therefore, using the SEM it is possible to demonstrate the details of prometaphase banding in metaphase chromosomes.


1987 ◽  
Vol 87 (1) ◽  
pp. 55-69
Author(s):  
A.M. Mullinger ◽  
R.T. Johnson

Metaphase chromosomes of a simian virus-transformed Indian muntjac cell line have been examined by scanning electron microscopy of material in which the fully packed metaphase structure is progressively relaxed. Such chromosomes are seen in standard, spread preparations of ultraviolet light-irradiated, metaphase-arrested cells, which have been incubated in the presence of inhibitors of DNA synthesis; they are processed for electron microscopy by trypsinization, further fixation and osmium impregnation. Decondensation is initially associated with a gradual elongation and loosening of the chromosome axis and, as loosening proceeds, the appearance of unexpected higher order structures—clusters of 20–40 nm diameter fibres. The arrangement of the clusters shows much variation between spreads. In the most fully extended chromosomes clusters are arranged in two longitudinal series with pairing between sister chromatids; the diameter of the majority of clusters in such chromosomes is in the range 0.4-0.6 micron. In the final stages of decondensation, clusters separate and individual chromosomes are no longer recognizable. Similar fibre clusters are found in interphase nuclei prepared by the same method. We suggest that the clusters of chromatin fibres may assemble as intermediates in the construction of an axial structure, which is further compacted in the fully condensed metaphase chromosome.


Author(s):  
Godfrey C. Hoskins ◽  
Betty B. Hoskins

Metaphase chromosomes from human and mouse cells in vitro are isolated by micrurgy, fixed, and placed on grids for electron microscopy. Interpretations of electron micrographs by current methods indicate the following structural features.Chromosomal spindle fibrils about 200Å thick form fascicles about 600Å thick, wrapped by dense spiraling fibrils (DSF) less than 100Å thick as they near the kinomere. Such a fascicle joins the future daughter kinomere of each metaphase chromatid with those of adjacent non-homologous chromatids to either side. Thus, four fascicles (SF, 1-4) attach to each metaphase kinomere (K). It is thought that fascicles extend from the kinomere poleward, fray out to let chromosomal fibrils act as traction fibrils against polar fibrils, then regroup to join the adjacent kinomere.


Author(s):  
K. Pegg-Feige ◽  
F. W. Doane

Immunoelectron microscopy (IEM) applied to rapid virus diagnosis offers a more sensitive detection method than direct electron microscopy (DEM), and can also be used to serotype viruses. One of several IEM techniques is that introduced by Derrick in 1972, in which antiviral antibody is attached to the support film of an EM specimen grid. Originally developed for plant viruses, it has recently been applied to several animal viruses, especially rotaviruses. We have investigated the use of this solid phase IEM technique (SPIEM) in detecting and identifying enteroviruses (in the form of crude cell culture isolates), and have compared it with a modified “SPIEM-SPA” method in which grids are coated with protein A from Staphylococcus aureus prior to exposure to antiserum.


Author(s):  
George H. Herbener ◽  
Antonio Nanci ◽  
Moise Bendayan

Protein A-gold immunocytochemistry is a two-step, post-embedding labeling procedure which may be applied to tissue sections to localize intra- and extracellular proteins. The key requisite for immunocytochemistry is the availability of the appropriate antibody to react in an immune response with the antigenic sites on the protein of interest. During the second step, protein A-gold complex is reacted with the antibody. This is a non- specific reaction in that protein A will combine with most IgG antibodies. The ‘label’ visualized in the electron microscope is colloidal gold. Since labeling is restricted to the surface of the tissue section and since colloidal gold is particulate, labeling density, i.e., the number of gold particles per unit area of tissue section, may be quantitated with ease and accuracy.


Author(s):  
D. R. Abrahamson ◽  
P. L. St.John ◽  
E. W. Perry

Antibodies coupled to tracers for electron microscopy have been instrumental in the ultrastructural localization of antigens within cells and tissues. Among the most popular tracers are horseradish peroxidase (HRP), an enzyme that yields an osmiophilic reaction product, and colloidal gold, an electron dense suspension of particles. Some advantages of IgG-HRP conjugates are that they are readily synthesized, relatively small, and the immunolabeling obtained in a given experiment can be evaluated in the light microscope. In contrast, colloidal gold conjugates are available in different size ranges and multiple labeling as well as quantitative studies can therefore be undertaken through particle counting. On the other hand, gold conjugates are generally larger than those of HRP but usually can not be visualized with light microscopy. Concern has been raised, however, that HRP reaction product, which is exquisitely sensitive when generated properly, may in some cases distribute to sites distant from the original binding of the conjugate and therefore result in spurious antigen localization.


Author(s):  
Patricia G. Calarco ◽  
Margaret C. Siebert

Visualization of preimplantation mammalian embryos by electron microscopy is difficult due to the large size of the ircells, their relative lack of internal structure, and their highly hydrated cytoplasm. For example, the fertilized egg of the mouse is a single cell of approximately 75μ in diameter with little organized cytoskelet on and apaucity ofor ganelles such as endoplasmic reticulum (ER) and Golgi material. Thus, techniques that work well on tissues or cell lines are often not adaptable to embryos at either the LM or EM level.Over several years we have perfected techniques for visualization of mammalian embryos by LM and TEM, SEM and for the pre-embedding localization of antigens. Post-embedding antigenlocalization in thin sections of mouse oocytes and embryos has presented a more difficult challenge and has been explored in LR White, LR Gold, soft EPON (after etching of sections), and Lowicryl K4M. To date, antigen localization has only been achieved in Lowicryl-embedded material, although even with polymerization at-40°C, the small ER vesicles characteristic of embryos are unrecognizable.


Sign in / Sign up

Export Citation Format

Share Document