Rapid earthquake loss assessment based on machine learning and representative sampling

2021 ◽  
pp. 875529302110423
Author(s):  
Zoran Stojadinović ◽  
Miloš Kovačević ◽  
Dejan Marinković ◽  
Božidar Stojadinović

This article proposes a new framework for rapid earthquake loss assessment based on a machine learning damage classification model and a representative sampling algorithm. A random forest classification model predicts a damage probability distribution that, combined with an expert-defined repair cost matrix, enables the calculation of the expected repair costs for each building and, in aggregate, of direct losses in the earthquake-affected area. The proposed building representation does not include explicit information about the earthquake and the soil type. Instead, such information is implicitly contained in the spatial distribution of damage. To capture this distribution, a sampling algorithm, based on K-means clustering, is used to select a minimal number of buildings that represent the area of interest in terms of its seismic risk, independently of future earthquakes. To observe damage states in the representative set after an earthquake, the proposed framework utilizes a local network of trained damage assessors. The model is updated after each damage observation cycle, thus increasing the accuracy of the current loss assessment. The proposed framework is exemplified using the 2010 Kraljevo, Serbia earthquake dataset.

Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 900 ◽  
Author(s):  
Debora Leitzke Betemps ◽  
Betania Vahl de Paula ◽  
Serge-Étienne Parent ◽  
Simone P. Galarça ◽  
Newton A. Mayer ◽  
...  

Regional nutrient ranges are commonly used to diagnose plant nutrient status. In contrast, local diagnosis confronts unhealthy to healthy compositional entities in comparable surroundings. Robust local diagnosis requires well-documented data sets processed by machine learning and compositional methods. Our objective was to customize nutrient diagnosis of peach (Prunus persica) trees at local scale. We collected 472 observations from commercial orchards and fertilizer trials across eleven cultivars of Prunus persica and six rootstocks in the state of Rio Grande do Sul (RS), Brazil. The random forest classification model returned an area under curve exceeding 0.80 and classification accuracy of 80% about yield cutoff of 16 Mg ha−1. Centered log ratios (clr) of foliar defective compositions have appropriate geometry to compute Euclidean distances from closest successful compositions in “enchanting islands”. Successful specimens closest to defective specimens as shown by Euclidean distance allowed reaching trustful fruit yields using site-specific corrective measures. Comparing tissue composition of low-yielding orchards to that of the closest successful neighbors in two major Brazilian peach-producing regions, regional diagnosis differed from local diagnosis, indicating that regional standards may fail to fit local conditions. Local diagnosis requires well-documented Humboldtian data sets that can be acquired through ethical collaboration between researchers and stakeholders.


2021 ◽  
Vol 22 (20) ◽  
pp. 10990
Author(s):  
Michelle L. M. Mulder ◽  
Xuehui He ◽  
Juul M. P. A. van den Reek ◽  
Paulo C. M. Urbano ◽  
Charlotte Kaffa ◽  
...  

Psoriasis (Pso) is a chronic inflammatory skin disease, and up to 30% of Pso patients develop psoriatic arthritis (PsA), which can lead to irreversible joint damage. Early detection of PsA in Pso patients is crucial for timely treatment but difficult for dermatologists to implement. We, therefore, aimed to find disease-specific immune profiles, discriminating Pso from PsA patients, possibly facilitating the correct identification of Pso patients in need of referral to a rheumatology clinic. The phenotypes of peripheral blood immune cells of consecutive Pso and PsA patients were analyzed, and disease-specific immune profiles were identified via a machine learning approach. This approach resulted in a random forest classification model capable of distinguishing PsA from Pso (mean AUC = 0.95). Key PsA-classifying cell subsets selected included increased proportions of differentiated CD4+CD196+CD183-CD194+ and CD4+CD196-CD183-CD194+ T-cells and reduced proportions of CD196+ and CD197+ monocytes, memory CD4+ and CD8+ T-cell subsets and CD4+ regulatory T-cells. Within PsA, joint scores showed an association with memory CD8+CD45RA-CD197- effector T-cells and CD197+ monocytes. To conclude, through the integration of in-depth flow cytometry and machine learning, we identified an immune cell profile discriminating PsA from Pso. This immune profile may aid in timely diagnosing PsA in Pso.


Today the world is gripped with fear of the most infectious disease which was caused by a newly discovered virus namely corona and thus termed as COVID-19. This is a large group of viruses which severely affects humans. The world bears testimony to its contagious nature and rapidity of spreading the illness. 50l people got infected and 30l people died due to this pandemic all around the world. This made a wide impact for people to fear the epidemic around them. The death rate of male is more compared to female. This Pandemic news has caught the attention of the world and gained its momentum in almost all the media platforms. There was an array of creating and spreading of true as well as fake news about COVID-19 in the social media, which has become popular and a major concern to the general public who access it. Spreading such hot news in social media has become a new trend in acquiring familiarity and fan base. At the time it is undeniable that spreading of such fake news in and around creates lots of confusion and fear to the public. To stop all such rumors detection of fake news has become utmost important. To effectively detect the fake news in social media the emerging machine learning classification algorithms can be an appropriate method to frame the model. In the context of the COVID-19 pandemic, we investigated and implemented by collecting the training data and trained a machine learning model by using various machine learning algorithms to automatically detect the fake news about the Corona Virus. The machine learning algorithm used in this investigation is Naïve Bayes classifier and Random forest classification algorithm for the best results. A separate model for each classifier is created after the data preparation and feature extraction Techniques. The results obtained are compared and examined accurately to evaluate the accurate model. Our experiments on a benchmark dataset with random forest classification model showed a promising results with an overall accuracy of 94.06%. This experimental evaluation will prevent the general public to keep themselves out of their fear and to know and understand the impact of fast-spreading as well as misleading fake news.


2021 ◽  
Vol 12 (11) ◽  
pp. 1886-1891
Author(s):  
Sarthika Dutt, Et. al.

Dysgraphia is a disorder that affects writing skills. Dysgraphia Identification at an early age of a child's development is a difficult task.  It can be identified using problematic skills associated with Dysgraphia difficulty. In this study motor ability, space knowledge, copying skill, Visual Spatial Response are some of the features included for Dysgraphia identification. The features that affect Dysgraphia disability are analyzed using a feature selection technique EN (Elastic Net). The significant features are classified using machine learning techniques. The classification models compared are KNN (K-Nearest Neighbors), Naïve Bayes, Decision tree, Random Forest, SVM (Support Vector Machine) on the Dysgraphia dataset. Results indicate the highest performance of the Random forest classification model for Dysgraphia identification.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1809
Author(s):  
Mohammed El Amine Senoussaoui ◽  
Mostefa Brahami ◽  
Issouf Fofana

Machine learning is widely used as a panacea in many engineering applications including the condition assessment of power transformers. Most statistics attribute the main cause of transformer failure to insulation degradation. Thus, a new, simple, and effective machine-learning approach was proposed to monitor the condition of transformer oils based on some aging indicators. The proposed approach was used to compare the performance of two machine-learning classifiers: J48 decision tree and random forest. The service-aged transformer oils were classified into four groups: the oils that can be maintained in service, the oils that should be reconditioned or filtered, the oils that should be reclaimed, and the oils that must be discarded. From the two algorithms, random forest exhibited a better performance and high accuracy with only a small amount of data. Good performance was achieved through not only the application of the proposed algorithm but also the approach of data preprocessing. Before feeding the classification model, the available data were transformed using the simple k-means method. Subsequently, the obtained data were filtered through correlation-based feature selection (CFsSubset). The resulting features were again retransformed by conducting the principal component analysis and were passed through the CFsSubset filter. The transformation and filtration of the data improved the classification performance of the adopted algorithms, especially random forest. Another advantage of the proposed method is the decrease in the number of the datasets required for the condition assessment of transformer oils, which is valuable for transformer condition monitoring.


Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 187
Author(s):  
Aaron Barbosa ◽  
Elijah Pelofske ◽  
Georg Hahn ◽  
Hristo N. Djidjev

Quantum annealers, such as the device built by D-Wave Systems, Inc., offer a way to compute solutions of NP-hard problems that can be expressed in Ising or quadratic unconstrained binary optimization (QUBO) form. Although such solutions are typically of very high quality, problem instances are usually not solved to optimality due to imperfections of the current generations quantum annealers. In this contribution, we aim to understand some of the factors contributing to the hardness of a problem instance, and to use machine learning models to predict the accuracy of the D-Wave 2000Q annealer for solving specific problems. We focus on the maximum clique problem, a classic NP-hard problem with important applications in network analysis, bioinformatics, and computational chemistry. By training a machine learning classification model on basic problem characteristics such as the number of edges in the graph, or annealing parameters, such as the D-Wave’s chain strength, we are able to rank certain features in the order of their contribution to the solution hardness, and present a simple decision tree which allows to predict whether a problem will be solvable to optimality with the D-Wave 2000Q. We extend these results by training a machine learning regression model that predicts the clique size found by D-Wave.


2021 ◽  
Vol 13 (11) ◽  
pp. 6376
Author(s):  
Junseo Bae ◽  
Sang-Guk Yum ◽  
Ji-Myong Kim

Given the highly visible nature, transportation infrastructure construction projects are often exposed to numerous unexpected events, compared to other types of construction projects. Despite the importance of predicting financial losses caused by risk, it is still difficult to determine which risk factors are generally critical and when these risks tend to occur, without benchmarkable references. Most of existing methods are prediction-focused, project type-specific, while ignoring the timing aspect of risk. This study filled these knowledge gaps by developing a neural network-driven machine-learning classification model that can categorize causes of financial losses depending on insurance claim payout proportions and risk occurrence timing, drawing on 625 transportation infrastructure construction projects including bridges, roads, and tunnels. The developed network model showed acceptable classification accuracy of 74.1%, 69.4%, and 71.8% in training, cross-validation, and test sets, respectively. This study is the first of its kind by providing benchmarkable classification references of economic damage trends in transportation infrastructure projects. The proposed holistic approach will help construction practitioners consider the uncertainty of project management and the potential impact of natural hazards proactively, with the risk occurrence timing trends. This study will also assist insurance companies with developing sustainable financial management plans for transportation infrastructure projects.


Sign in / Sign up

Export Citation Format

Share Document