scholarly journals Humboldtian Diagnosis of Peach Tree (Prunus persica) Nutrition Using Machine-Learning and Compositional Methods

Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 900 ◽  
Author(s):  
Debora Leitzke Betemps ◽  
Betania Vahl de Paula ◽  
Serge-Étienne Parent ◽  
Simone P. Galarça ◽  
Newton A. Mayer ◽  
...  

Regional nutrient ranges are commonly used to diagnose plant nutrient status. In contrast, local diagnosis confronts unhealthy to healthy compositional entities in comparable surroundings. Robust local diagnosis requires well-documented data sets processed by machine learning and compositional methods. Our objective was to customize nutrient diagnosis of peach (Prunus persica) trees at local scale. We collected 472 observations from commercial orchards and fertilizer trials across eleven cultivars of Prunus persica and six rootstocks in the state of Rio Grande do Sul (RS), Brazil. The random forest classification model returned an area under curve exceeding 0.80 and classification accuracy of 80% about yield cutoff of 16 Mg ha−1. Centered log ratios (clr) of foliar defective compositions have appropriate geometry to compute Euclidean distances from closest successful compositions in “enchanting islands”. Successful specimens closest to defective specimens as shown by Euclidean distance allowed reaching trustful fruit yields using site-specific corrective measures. Comparing tissue composition of low-yielding orchards to that of the closest successful neighbors in two major Brazilian peach-producing regions, regional diagnosis differed from local diagnosis, indicating that regional standards may fail to fit local conditions. Local diagnosis requires well-documented Humboldtian data sets that can be acquired through ethical collaboration between researchers and stakeholders.

Today the world is gripped with fear of the most infectious disease which was caused by a newly discovered virus namely corona and thus termed as COVID-19. This is a large group of viruses which severely affects humans. The world bears testimony to its contagious nature and rapidity of spreading the illness. 50l people got infected and 30l people died due to this pandemic all around the world. This made a wide impact for people to fear the epidemic around them. The death rate of male is more compared to female. This Pandemic news has caught the attention of the world and gained its momentum in almost all the media platforms. There was an array of creating and spreading of true as well as fake news about COVID-19 in the social media, which has become popular and a major concern to the general public who access it. Spreading such hot news in social media has become a new trend in acquiring familiarity and fan base. At the time it is undeniable that spreading of such fake news in and around creates lots of confusion and fear to the public. To stop all such rumors detection of fake news has become utmost important. To effectively detect the fake news in social media the emerging machine learning classification algorithms can be an appropriate method to frame the model. In the context of the COVID-19 pandemic, we investigated and implemented by collecting the training data and trained a machine learning model by using various machine learning algorithms to automatically detect the fake news about the Corona Virus. The machine learning algorithm used in this investigation is Naïve Bayes classifier and Random forest classification algorithm for the best results. A separate model for each classifier is created after the data preparation and feature extraction Techniques. The results obtained are compared and examined accurately to evaluate the accurate model. Our experiments on a benchmark dataset with random forest classification model showed a promising results with an overall accuracy of 94.06%. This experimental evaluation will prevent the general public to keep themselves out of their fear and to know and understand the impact of fast-spreading as well as misleading fake news.


2021 ◽  
Vol 12 (11) ◽  
pp. 1886-1891
Author(s):  
Sarthika Dutt, Et. al.

Dysgraphia is a disorder that affects writing skills. Dysgraphia Identification at an early age of a child's development is a difficult task.  It can be identified using problematic skills associated with Dysgraphia difficulty. In this study motor ability, space knowledge, copying skill, Visual Spatial Response are some of the features included for Dysgraphia identification. The features that affect Dysgraphia disability are analyzed using a feature selection technique EN (Elastic Net). The significant features are classified using machine learning techniques. The classification models compared are KNN (K-Nearest Neighbors), Naïve Bayes, Decision tree, Random Forest, SVM (Support Vector Machine) on the Dysgraphia dataset. Results indicate the highest performance of the Random forest classification model for Dysgraphia identification.


2021 ◽  
pp. 875529302110423
Author(s):  
Zoran Stojadinović ◽  
Miloš Kovačević ◽  
Dejan Marinković ◽  
Božidar Stojadinović

This article proposes a new framework for rapid earthquake loss assessment based on a machine learning damage classification model and a representative sampling algorithm. A random forest classification model predicts a damage probability distribution that, combined with an expert-defined repair cost matrix, enables the calculation of the expected repair costs for each building and, in aggregate, of direct losses in the earthquake-affected area. The proposed building representation does not include explicit information about the earthquake and the soil type. Instead, such information is implicitly contained in the spatial distribution of damage. To capture this distribution, a sampling algorithm, based on K-means clustering, is used to select a minimal number of buildings that represent the area of interest in terms of its seismic risk, independently of future earthquakes. To observe damage states in the representative set after an earthquake, the proposed framework utilizes a local network of trained damage assessors. The model is updated after each damage observation cycle, thus increasing the accuracy of the current loss assessment. The proposed framework is exemplified using the 2010 Kraljevo, Serbia earthquake dataset.


2020 ◽  
Author(s):  
Carolyn Lou ◽  
Pascal Sati ◽  
Martina Absinta ◽  
Kelly Clark ◽  
Jordan D. Dworkin ◽  
...  

AbstractBackground and PurposeThe presence of a paramagnetic rim around a white matter lesion has recently been shown to be a hallmark of a particular pathological type of multiple sclerosis (MS) lesion. Increased prevalence of these paramagnetic rim lesions (PRLs) is associated with a more severe disease course in MS. The identification of these lesions is time-consuming to perform manually. We present a method to automatically detect PRLs on 3T T2*-phase images.MethodsT1-weighted, T2-FLAIR, and T2*-phase MRI of the brain were collected at 3T for 19 subjects with MS. The images were then processed with lesion segmentation, lesion center detection, lesion labelling, and lesion-level radiomic feature extraction. A total of 877 lesions were identified, 118 (13%) of which contained a paramagnetic rim. We divided our data into a training set (15 patients, 673 lesions) and a testing set (4 patients, 204 lesions). We fit a random forest classification model on the training set and assessed our ability to classify lesions as PRL on the test set.ResultsThe number of PRLs per subject identified via our automated lesion labelling method was highly correlated with the gold standard count of PRLs per subject, r = 0.91 (95% CI [0.79, 0.97]). The classification algorithm using radiomic features can classify a lesion as PRL or not with an area under the curve of 0.80 (95% CI [0.67, 0.86]).ConclusionThis study develops a fully automated technique for the detection of paramagnetic rim lesions using standard T1 and FLAIR sequences and a T2*phase sequence obtained on 3T MR images.HighlightsA fully automated method for both the identification and classification of paramagnetic rim lesions is proposed.Radiomic features in conjunction with machine learning algorithms can accurately classify paramagnetic rim lesions.Challenges for classification are largely driven by heterogeneity between lesions, including equivocal rim signatures and lesion location.


2020 ◽  
Vol 53 (8) ◽  
pp. 5747-5788
Author(s):  
Julian Hatwell ◽  
Mohamed Medhat Gaber ◽  
R. Muhammad Atif Azad

Abstract Modern machine learning methods typically produce “black box” models that are opaque to interpretation. Yet, their demand has been increasing in the Human-in-the-Loop processes, that is, those processes that require a human agent to verify, approve or reason about the automated decisions before they can be applied. To facilitate this interpretation, we propose Collection of High Importance Random Path Snippets (CHIRPS); a novel algorithm for explaining random forest classification per data instance. CHIRPS extracts a decision path from each tree in the forest that contributes to the majority classification, and then uses frequent pattern mining to identify the most commonly occurring split conditions. Then a simple, conjunctive form rule is constructed where the antecedent terms are derived from the attributes that had the most influence on the classification. This rule is returned alongside estimates of the rule’s precision and coverage on the training data along with counter-factual details. An experimental study involving nine data sets shows that classification rules returned by CHIRPS have a precision at least as high as the state of the art when evaluated on unseen data (0.91–0.99) and offer a much greater coverage (0.04–0.54). Furthermore, CHIRPS uniquely controls against under- and over-fitting solutions by maximising novel objective functions that are better suited to the local (per instance) explanation setting.


2020 ◽  
Vol 12 (3) ◽  
pp. 369 ◽  
Author(s):  
Alessandro Lapini ◽  
Simone Pettinato ◽  
Emanuele Santi ◽  
Simonetta Paloscia ◽  
Giacomo Fontanelli ◽  
...  

In this paper, multifrequency synthetic aperture radar (SAR) images from ALOS/PALSAR, ENVISAT/ASAR and Cosmo-SkyMed sensors were studied for forest classification in a test area in Central Italy (San Rossore), where detailed in-situ measurements were available. A preliminary discrimination of the main land cover classes and forest types was carried out by exploiting the synergy among L-, C- and X-bands and different polarizations. SAR data were preliminarily inspected to assess the capabilities of discriminating forest from non-forest and separating broadleaf from coniferous forests. The temporal average backscattering coefficient ( σ ¯ °) was computed for each sensor-polarization pair and labeled on a pixel basis according to the reference map. Several classification methods based on the machine learning framework were applied and validated considering different features, in order to highlight the contribution of bands and polarizations, as well as to assess the classifiers’ performance. The experimental results indicate that the different surface types are best identified by using all bands, followed by joint L- and X-bands. In the former case, the best overall average accuracy (83.1%) is achieved by random forest classification. Finally, the classification maps on class edges are discussed to highlight the misclassification errors.


Nowadays, a huge amount of data is generated due to the growth in the technologies. There are different tools used to view this massive amount of data, and these tools contain different data mining techniques which can be applied for the obtained data sets. Classification is required to extract useful information or to predict the result from these enormous amounts of data. For this purpose, there are different classification algorithms. In this paper, we have compared Naive Bayes, K*, and random forest classification algorithm using Weka tool. To analyze the performance of these three algorithms we have considered three data sets. They are diabetes, supermarket and weather data set. In this work, an analysis is made based on the confusion matrix and different performance measures like RMSE, MAE, ROC, etc


2021 ◽  
Vol 23 ◽  
pp. 134-149
Author(s):  
Ariyono Setiawan

Entrepreneurship is a phenomenon that has an important influence on the progress and welfare of the world, so that entrepreneurship is used as the base of economic development. Psychologically, entrepreneurs are people who have a strong internal drive as an effort to achieve certain goals so that they have a tendency to experiment in showing a character that is free from the control of others. Entrepreneurship can be seen from various points of view. The angle and context in question are views from several fields, namely according to economists, management, business people, psychologists and investors. The main requirement that an entrepreneur must have is entrepreneurial knowledge. entrepreneurial readiness is determined by the knowledge possessed and experience in conducting a business (Kurniawati, 2019). In the midst of the rapid development of artificial intelligence (AI) technology today. Not many people know that artificial intelligence consists of several branches, one of which is machine learning. This machine learning (ML) technology is one of the branches of AI that is very interesting. The sample population in this study was obtained from the air transportation school consisting of 7 populations. Data analysis is done by using . The research location is an air transportation school with Machine Learning Random Forest Classification with a population of cadets, lecturers and the general public


Author(s):  
Vittorio A. Gensini ◽  
Cody Converse ◽  
Walker S. Ashley ◽  
Mateusz Taszarek

AbstractPrevious studies have identified environmental characteristics that skillfully discriminate between severe and significant-severe weather events, but they have largely been limited by sample size and/or population of predictor variables. Given the heightened societal impacts of significant-severe weather, this topic was revisited using over 150 000 ERA5 reanalysis-derived vertical profiles extracted at the grid-point nearest—and just prior to—tornado and hail reports during the period 1996–2019. Profiles were quality-controlled and used to calculate 84 variables. Several machine learning classification algorithms were trained, tested, and cross-validated on these data to assess skill in predicting severe or significant-severe reports for tornadoes and hail. Random forest classification outperformed all tested methods as measured by cross-validated critical success index scores and area under the receiver operating characteristic curve values. In addition, random forest classification was found to be more reliable than other methods and exhibited negligible frequency bias. The top three most important random forest classification variables for tornadoes were wind speed at 500 hPa, wind speed at 850 hPa, and 0–500-m storm-relative helicity. For hail, storm-relative helicity in the 3–6 km and -10 to -30 °C layers, along with 0–6-km bulk wind shear, were found to be most important. A game theoretic approach was used to help explain the output of the random forest classifiers and establish critical feature thresholds for operational nowcasting and forecasting. A use case of spatial applicability of the random forest model is also presented, demonstrating the potential utility for operational forecasting. Overall, this research supports a growing number of weather and climate studies finding admirable skill in random forest classification applications.


Sign in / Sign up

Export Citation Format

Share Document