Clay mineral studies of the Tripoli Formation (Lower Messinian), Sicily

Clay Minerals ◽  
1988 ◽  
Vol 23 (3) ◽  
pp. 309-321 ◽  
Author(s):  
E. Azzaro ◽  
A. Bellanca ◽  
R. Neri

AbstractThe characterization of clay mineral assemblages in the diatomite-dominated Tripoli Formation (Lower Messinian, central Sicily) has resulted in delineation of suites dominated by generally well-crystallized dioctahedral smectite and illite of low crystallinity, with lesser amounts of kaolinite and chlorite. These minerals are thought to have a mainly detrital origin related to the calcareous and marly formations exposed in the margins of the depositional area. Vertical fluctuations of the montmorillonite/illite ratio and changes of the crystallinity and chemical composition of these phyllosilicates support environmental interpretations from isotopic data of associated carbonates, and point to a wide variability of depositional conditions ranging from evaporating to brackish. Early diagenesis of the clay minerals was controlled by the primary composition of the sediment which, in turn, affected the porewater chemistry.

1987 ◽  
Vol 124 (3) ◽  
pp. 261-271 ◽  
Author(s):  
Julian E. Andrews

AbstractClay minerals from Middle Jurassic lagoonal mudrocks, siltstones and silty fine-grained sandstones of the upper Great Estuarine Group (Bathonian) are divided into four assemblages. Assemblage 1, the most common assemblage, is rich in mixed-layer illite–smectite with attendant illite and kaolinite. Assemblage 2 is dominated by smectitic clay. These assemblages are indicative of primary Jurassic deposition. Illite and kaolinite were probably derived from the weathering of older rocks and soils in the basin hinterland and were deposited in the lagoons as river-borne detritus. The majority of smectite and mixed-layer illite–smectite is interpreted as the argillization product of Jurassic volcanic dust, also deposited in the lagoons by rivers. Near major Tertiary igneous intrusions these depositional clay mineral assemblages have been altered. Assemblage 3 contains smectite-poor mixed-layer illite–smectite, whilst Assemblage 4 contains no smectitic clay at all. Destruction of smectite interlayers occurred at relatively shallow burial depths (< 2500 m) due to enhanced geothermal gradients and local convective hot-water circulation cells associated with the major Tertiary igneous intrusions.


Clay Minerals ◽  
2002 ◽  
Vol 37 (4) ◽  
pp. 699-707 ◽  
Author(s):  
A. Mirabella ◽  
M. Egli ◽  
S. Carnicelli ◽  
G. Sartori

AbstractThe formation of clay minerals was investigated in Spodosols developed in the subalpine belt, with similar exposure, climate and age, but deriving from different parent materials. All the soils were classified as Haplic Podzols and showed the characteristic eluviation and illuviation features of Fe, Al and organic carbon. However, varying parent material lithology led to different clay mineral assemblages in the soil. Smectite could be found in the E horizons of soils developed from granodiorite and tonalite materials. Its formation was strongly dependent on the presence of chlorite in the parent material. If nearly no other 2:1 mineral components, such as chlorite, are present in the lower soil horizons, then a residual micaceous mineral becomes the dominant clay mineral. The latter derives from a mica-vermiculite interstratified mineral.


Clay Minerals ◽  
2009 ◽  
Vol 44 (3) ◽  
pp. 389-404 ◽  
Author(s):  
M. Setti ◽  
L. Marinoni ◽  
A. Lopez-Galindo

AbstractThe CRP-3 drilling project collected sediments from 3 to 939 mbsf (metres below sea floor) in the Victoria Land Basin in Antarctica. The upper sequence (down to ~790 m bsf) is of Cenozoic age and made up of detrital glaciogenic sediments; the characteristics of clay minerals in this part have been reported elsewhere. Here, the compositional features of clay minerals in the lower sequence such as conglomerates, Devonian sandstones and dolerites are described and genetic processes clarified. Clay minerals in the deepest part of the sequence derive from the alteration of different lithologies that mostly make up the sedimentary basin.Two clay mineral assemblages were characterized through analysis by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). From 790 to 823 mbsf, samples consist of authigenic smectite of variable chemical composition forming imbricated texture of plates or flakes. The smectites probably result from hydrothermal/diagenetic transformation of earlier minerals. The primary smectite cement underwent reorganization during shearing and cataclasis. The lowest part of the sequence (below 823 mbsf) is characterized by an assemblage of kaolinite, mixed-layer illite-smectite, Fe oxyhydroxide, sporadic smectite and poorly crystallized illite. It reflects a stronger alteration process than that recorded in the upper units of core CRP-3, related to hydrothermalism connected with the intrusion of an igneous body. Both assemblages show clear differences in particle morphology, texture and smectite composition to the clay assemblages found in the Cenozoic glaciomarine sediments in the upper sequence. The different phases of alteration appear related to the processes of rifting, exhumation and faulting that characterized this region since the Mesozoic.


Clay Minerals ◽  
2005 ◽  
Vol 40 (1) ◽  
pp. 79-92 ◽  
Author(s):  
J. Alonso-Azcárate ◽  
M. Rodas ◽  
J. F. Barrenechea ◽  
J. R. Mas

AbstractVariations in clay mineral assemblages, changes in Kübler index (KI), and the chemical composition of chlorites are used to identify source areas in the lacustrine materials in the Lower Cretaceous Leza Limestone Formation of the Cameros Basin, northern Spain. This formation has fairly homogeneous lithological characteristics and facies associations which do not allow for identification and characterization of local source areas. The Arnedillo lithosome of the Leza Limestone Formation contains a clay mineral association (Mg-chlorite, illite and smectite) indicative of its provenance. Chlorite composition and illite KI values indicate that these minerals were formed at temperatures higher than those reached by the Leza Formation which indicates its detrital origin. The similarity in the Mg-chlorite composition between the Arnedillo lithosome and the Keuper sediments of the area indicates that these materials acted as a local source area. This implies that Triassic sediments were exposed, at least locally, at the time of deposition of the Leza Formation. The presence of smectite in the Leza Formation is related to a retrograde diagenesis event that altered the Mg-chlorites in some samples.


Clay Minerals ◽  
1981 ◽  
Vol 16 (1) ◽  
pp. 1-21 ◽  
Author(s):  
G. Lagaly

AbstractMany problems—from soil research to ceramics—require a reliable characterization of the clay minerals involved. This can be done using four clay-organic reactions: (i) staining tests and dye adsorption; (ii) glycerol and glycol adsorption; (iii) intercalation; (iv) alkylammonium ion exchange. Dye adsorption (staining tests) and glycerol adsorption allow a preliminary identification of the clay mineral groups. Intercalation reactions indicate minute differences between kaolins which cannot be detected by XRD and DTA. Alkylammonium ion exchange provides the best method for characterizing smectites and is sensitive to changes in the layer charge.


Three mechanisms for clay mineral formation (inheritance, neoformation, and transformation) operating in three geological environments (weathering, sedimentary, and diagenetic-hydrothermal) yield nine possibilities for die origin of clay minerals in nature. Several of these possibilities are discussed in terms of the rock cycle. The mineralogy of clays neoformed in the weathering environment is a function of solution chemistry, with the most dilute solutions favouring formation of the least soluble clays. After erosion and transportation, these clays may be deposited on the ocean floor in a lateral sequence that depends on floccule size. Clays undergo little reaction in the ocean, except for ion exchange and the neoformation of smectite; therefore, most clays found on the ocean floor are inherited from adjacent continents. Upon burial and heating, however, dioctahedral smectite reacts in the diagenetic environment to yield mixed-layer illite-smectite, and finally illite. With uplift and weathering, the cycle begins again.


Clay Minerals ◽  
2006 ◽  
Vol 41 (1) ◽  
pp. 473-512 ◽  
Author(s):  
R. J. Merriman

AbstractLower Palaeozoic rocks crop out extensively in Wales, the Lake District of northern England and the Southern Uplands of Scotland; they also form the subcrop concealed beneath the English Midlands and East Anglia. These mainly marine sedimentary rocks were deposited in basins created during plate tectonic assembly of the various terranes that amalgamated to form the British Isles, 400-600 Ma ago. Final amalgamation occurred during the late Lower Devonian Acadian Orogeny when the basins were uplifted and deformed, producing belts of cleaved, low-grade metasediments, so-called slate belts, with a predominantly Caledonian (NE-SW) trend. The clay mineralogy of mudrock lithologies - including mudstone, shale and slate - found in these belts is reviewed. Using X-ray diffraction data from the <2 μm fractions of ~4500 mudrocks samples, clay mineral assemblages are summarized and discussed in terms of diagenetic and low-grade metamorphic reactions, and the metapelitic grade indicated by the Kübler index of illite crystallinity.Two sequences of clay mineral assemblages, or regional assemblages, are recognized. Regional Assemblage A is characterized by a greater diversity of clay minerals in assemblages from all metapelitic grades. It includes K-rich, intermediate Na/K and Na-rich white micas, chlorite and minor amounts of pyrophyllite. Corrensite, rectorite and pyrophyllite are found in the clay assemblages of contact or hydrothermally altered mudstones. K-white micas are aluminous and phengite-poor, with b cell dimensions in the range 8.98-9.02 Å. Regional Assemblage B has fewer clay minerals in assemblages from a range of metapelitic grades. Phengite-rich K-mica is characteristic whereas Na- micas are rare, and absent in most assemblages; chlorite is present and minor corrensite occurs in mudrocks with mafic-rich detritus. Minor amounts of kaolinite are sporadically present, but dickite and nacrite are rare; pyrophyllite and rectorite are generally absent. The b cell dimensions of K-white mica in Regional Assemblage B are in the range 9.02-9.06 Å. The two regional assemblages are found in contrasting geotectonic settings. Regional Assemblage A is characteristic of the extensional basin settings of Wales, the northern Lake District and the Isle of Man. These basins have a history of early burial metamorphism associated with extension, and syn-burial or post-burial intrusive and extrusive volcanic activity. Intermediate Na/K mica probably developed from hydrothermal fluids generated around submarine volcanic centres. Deep diagenetic and low anchizonal clay mineral in these basins may develop a bedding-parallel microfabric. Chlorite-mica stacks also occur in the extensional basins and the stacking planes represent another type of bedding-parallel microfabric. Both types of microfabric are non-tectonic and developed by burial during the extensional phase of basin evolution. Regional Assemblage B is developed in the plate-convergent settings of the Southern Uplands and the southern Lake District. In the accretionary complex of the Southern Uplands the processes of burial diagenesis, metamorphism and tectonism were synchronous events. In both plate- convergent basins, low temperatures and tectonic fabric-formation had an important role in clay mineral reactions, whereas hydrothermal fluids played no part in clay genesis.


Clay Minerals ◽  
2009 ◽  
Vol 44 (3) ◽  
pp. 339-360 ◽  
Author(s):  
A. Yildiz ◽  
İ. Dumlupunar

AbstractThere are numerous bentonite deposits, formed by the alteration of volcanic rocks, in the Kapıkaya area (Eskişehir, western Turkey). These deposits can be classified into three groups according to their stratigraphical levels. X-ray diffraction (XRD), scanning electron microscope (SEM), major, rare-earth and trace-element analyses of bentonites and their parent rocks from the Kapıkaya area were used to evaluate the mineralogical and geochemical properties of bentonites and their parental affinities. Mineral assemblages resulting from bentonite deposits consist mostly of clay minerals, gypsum, cristobalite/opal-CT, quartz, feldspar, calcite and dolomite. The clay minerals are represented mainly by dioctahedral smectite and lesser amounts of illite and chlorite. The enrichment and depletion of the elements indicates open-system alteration conditions. The enrichments in MgO, Fe2O3, TiO2, Co, Pb, Zn, and Ni are related to the precipitation of hydrothermal solutions channelled throughout ultramafic sources. The main differences in mineralogy and geochemistry of bentonites from the Kapıkaya area are in the smectite composition and the contents of major, rare-earth and other trace elements. The data obtained show that the types of parent rock the influenced the mineralogical and geochemical compositions of the bentonites.


Clay Minerals ◽  
2006 ◽  
Vol 41 (1) ◽  
pp. 309-354 ◽  
Author(s):  
C. V. Jeans

AbstractThe regional distribution, mineralogy, petrology and chemistry of the detrital and authigenic clay minerals associated with the Permo-Triassic strata (excluding the Rotliegend: see Ziegler, 2006; this volume), of the onshore and offshore regions of the British Isles are reviewed within their stratigraphical framework. The origin of these clay minerals is discussed in relation to current hypotheses on the developments of the Mg-rich clay mineral assemblages associated with the evaporitic red-bed Germanic facies of Europe and North Africa.Composite clay mineral successions are described for seven regions of the British Isles — the Western Approaches Trough; SW England; South Midlands; Central Midlands; the Cheshire Basin; NE Yorkshire; and the Central North Sea. The detrital clay mineral assemblages of the Early Permian strata are variable, consisting of mica, smectite, smectite-mica, kaolin and chlorite, whereas those of the Late Permian and the Trias are dominated by mica, usually in association with minor Fe-rich chlorite. The detrital mica consists of a mixture of penecontemporaneous ferric mica, probably of pedogenic origin, and recycled Pre-Permian mica. In the youngest Triassic strata (Rhaetian), the detrital clay assemblages may contain appreciable amounts of poorly defined collapsible minerals (irregular mixed-layer smectite-mica-vermiculite) and kaolin, giving them a Jurassic aspect. There are two types of authigenic clay mineral assemblages. Kaolin may occur as a late-stage diagenetic mineral where the original Permo-Triassic porewaters of the sediment have been replaced by meteoritic waters. A suite of early-stage diagenetic clay minerals, many of them Mg-rich, are linked to the evaporitic red-bed facies — these include sepiolite, palygorskite, smectite, irregular mixed- layer smectite-mica and smectite-chlorite, corrensite, chlorite and glauconite (sensu lato). The sandstones and mudstones of the onshore regions of the British Isles display little or no difference in their detrital and authigenic clay mineral assemblages. In contrast, the sandstones of the offshore regions (North Sea) show major differences with the presence of extensive chloritic cements containing Mg-rich and Al-rich chlorite, irregular mixed-layer serpentine-chlorite, and mica.


1995 ◽  
Vol 42 ◽  
pp. 57-67
Author(s):  
E.S. Rasmussen

The Vejle Fjord Formation comprises three members; the Brejning Clay, the Vejle Fjord Clay, and the Vejle Fjord Sand (Late Oligocene-Early Miocene). The lower part of the Brejning Clay was laid down in a shelf environment with a reduced influx of siliciclastic detritus. This resulted in deposition of clay minerals enriched in iron. The early diagenesis was characterized by pyrite and siderite formation within an anoxic sedimentary environment which was established due to degradation of organic matter just below the water/ sediment surface. The clay mineral assemblages of the upper part of the Brejning Clay, Vejle Fjord Clay and Vejle Fjord Sand, which were deposited in a lagoonal environment, reflect different stages in the development of the lagoon. When the lagoon was protected from marine influence, the clay mineral assemblage was dominated by kaolinite. During periods with open marine influence the smectite and illite content increased markedly. Authigenic mineral assemblages are characterized by pyrite and siderite in the lagoonal deposits and pyrite in the tidal flats deposits. The absence of siderite from the latter is due to insufficient reactive iron to form siderite


Sign in / Sign up

Export Citation Format

Share Document