Mineralogy and geochemical affinities of bentonites from Kapıkaya (Eskişehir, western Turkey)

Clay Minerals ◽  
2009 ◽  
Vol 44 (3) ◽  
pp. 339-360 ◽  
Author(s):  
A. Yildiz ◽  
İ. Dumlupunar

AbstractThere are numerous bentonite deposits, formed by the alteration of volcanic rocks, in the Kapıkaya area (Eskişehir, western Turkey). These deposits can be classified into three groups according to their stratigraphical levels. X-ray diffraction (XRD), scanning electron microscope (SEM), major, rare-earth and trace-element analyses of bentonites and their parent rocks from the Kapıkaya area were used to evaluate the mineralogical and geochemical properties of bentonites and their parental affinities. Mineral assemblages resulting from bentonite deposits consist mostly of clay minerals, gypsum, cristobalite/opal-CT, quartz, feldspar, calcite and dolomite. The clay minerals are represented mainly by dioctahedral smectite and lesser amounts of illite and chlorite. The enrichment and depletion of the elements indicates open-system alteration conditions. The enrichments in MgO, Fe2O3, TiO2, Co, Pb, Zn, and Ni are related to the precipitation of hydrothermal solutions channelled throughout ultramafic sources. The main differences in mineralogy and geochemistry of bentonites from the Kapıkaya area are in the smectite composition and the contents of major, rare-earth and other trace elements. The data obtained show that the types of parent rock the influenced the mineralogical and geochemical compositions of the bentonites.

1970 ◽  
Vol 37 (292) ◽  
pp. 934-938 ◽  
Author(s):  
D. C. Bain

SummarySandstones from Mull and Morvern, most of which are from the Greensand formation, have been shown by X-ray diffraction to contain minerals of the plumbogummite group in very small amounts in the < 1·4µm fraction. The minerals were concentrated by HF digestion of the clay minerals. X-ray spectrographic traces show concentrations of Sr, La, Ce, Yt, and Ba, and a semiquantitative spectrochemical analysis also shows a concentration of Ca and Pb and the presence of numerous rare-earth elements. Individual minerals, which have a complex composition and can not be assigned to any one named species, are disseminated throughout the rocks as particles with an estimated size of between 0·1 and 0·25µm.


Author(s):  
Ivett Kovács ◽  
Tibor Németh ◽  
Gabriella B. Kiss ◽  
Zsolt Benkó

AbstractThe laboratory micro X-ray diffraction (μ-XRD) technique is a suitable method to study minerals in-situ in whole-rock specimens without any sample preparation or in polished thin sections, and even in small amounts in powdered form. The micro X-ray diffraction method uses the conventional, closed-tube X-ray generator, but modifications were needed in the diffraction column, sample holder and detector in order to achieve μ-XRD capability.In this paper, we present a case study of the capillary method used in µ-XRD on hydrothermal clay mineral assemblages that formed in the Velence Mts (Hungary). The capillary method in µ-XRD has many advantages in the investigation of small amounts of clay minerals: (1) easy and rapid preparation of randomly oriented, powdered samples; (2) rapid measurements; (3) accurate diffraction patterns. By using the capillary method, the formation of preferred orientation can be eliminated; thus the (hkl) reflection of the clay minerals can be precisely measured. Illite polytype quantification and the investigation of (060) reflection of clay minerals can be used satisfactorily in µ-XRD.Hydrothermal clay mineral assemblages are indicative of temperature and pH. Their examination can determine the physicochemical parameters of the hydrothermal fluids that interacted with the host granite in the Velence Mts. The analyzed hydrothermal clay minerals from the western part of the mountains suggest lower temperatures (150–200 °C) and intermediate pH conditions. In contrast, the clay mineral assemblages' characteristics for the eastern part of the mountains indicate more intense argillization and higher temperatures (∼220 °C) and intermediate pH conditions.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 724
Author(s):  
Sara Massardo ◽  
Alessandro Cingolani ◽  
Cristina Artini

Rare earth-doped ceria thin films are currently thoroughly studied to be used in miniaturized solid oxide cells, memristive devices and gas sensors. The employment in such different application fields derives from the most remarkable property of this material, namely ionic conductivity, occurring through the mobility of oxygen ions above a certain threshold temperature. This feature is in turn limited by the association of defects, which hinders the movement of ions through the lattice. In addition to these issues, ionic conductivity in thin films is dominated by the presence of the film/substrate interface, where a strain can arise as a consequence of lattice mismatch. A tensile strain, in particular, when not released through the occurrence of dislocations, enhances ionic conduction through the reduction of activation energy. Within this complex framework, high pressure X-ray diffraction investigations performed on the bulk material are of great help in estimating the bulk modulus of the material, and hence its compressibility, namely its tolerance toward the application of a compressive/tensile stress. In this review, an overview is given about the correlation between structure and transport properties in rare earth-doped ceria films, and the role of high pressure X-ray diffraction studies in the selection of the most proper compositions for the design of thin films.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Michael Zoller ◽  
Hubert Huppertz

AbstractThe rare earth oxoborates REB5O8(OH)2 (RE = Ho, Er, Tm) were synthesized in a Walker-type multianvil apparatus at a pressure of 2.5 GPa and a temperature of 673 K. Single-crystal X-ray diffraction data provided the basis for the structure solution and refinement. The compounds crystallize in the monoclinic space group C2 (no. 5) and are composed of a layer-like structure containing dreier and sechser rings of corner sharing [BO4]5− tetrahedra. The rare earth metal cations are coordinated between two adjacent sechser rings. Further characterization was performed utilizing IR spectroscopy.


1962 ◽  
Vol 42 (2) ◽  
pp. 296-301 ◽  
Author(s):  
J. S. Clark ◽  
J. E. Brydon ◽  
H. J. Hortie

X-ray diffraction analysis was used to identify the clay minerals present in fourteen subsoil samples that were selected to represent some more important clay-bearing deposits in British Columbia. The clay mineralogy of the subsoils varied considerably but montmorillonitic clay minerals tended to predominate in the water-laid deposits of the south and illite in the soil parent materials of the Interior Plains region of the northeastern part of the Province.


Author(s):  
Simon Engelbert ◽  
Rolf-Dieter Hoffmann ◽  
Jutta Kösters ◽  
Steffen Klenner ◽  
Rainer Pöttgen

Abstract The structures of the equiatomic stannides RERhSn with the smaller rare earth elements Y, Gd-Tm and Lu were reinvestigated on the basis of temperature-dependent single crystal X-ray diffraction data. GdRhSn crystallizes with the aristotype ZrNiAl at 293 and 90 K. For RE = Y, Tb, Ho and Er the HP-CeRuSn type (approximant with space group R3m) is already formed at room temperature, while DyRhSn adopts the HP-CeRuSn type below 280 K. TmRhSn and LuRhSn show incommensurate modulated variants with superspace groups P31m(1/3; 1/3; γ) 000 (No. 157.1.23.1) (γ = 3/8 for TmRhSn and γ = 2/5 for LuRhSn). The driving force for superstructure formation (modulation) is a strengthening of Rh–Sn bonding. The modulation is expressed in a 119Sn Mössbauer spectrum of DyRhSn at 78 K through line broadening.


2012 ◽  
Vol 525-526 ◽  
pp. 277-280
Author(s):  
Guo Jin ◽  
Xiu Fang Cui ◽  
Er Bao Liu ◽  
Qing Fen Li

The effect of the neodymium content on mechanical properties of the electro-brush plated nanoAl2O3/Ni composite coating was investigated in this paper. The microstructure and phase structure were studied with scanning electron microscope (SEM) and X-ray diffraction (XRD). The hardness and abrasion properties of several coatings with different neodymium content were studied by nanoindentation test and friction / wear experiment. Results show that the coatings are much finer and more compact when the neodymium was added, and the hardness and abrasion property of the coatings with neodymium were improved obviously. Besides, the small cracks conduced by the upgrowth stress in the coatings were ameliorated when the rare earth neodymium was added. The improvement mechanism was further discussed.


1989 ◽  
Vol 151 ◽  
Author(s):  
W. R. Bennett ◽  
R. F. C. Farrow ◽  
S. S. P. Parkin ◽  
E. E. Marinero

ABSTRACTWe report on the new epitaxial system LaF3/Er/Dy/Er/LaF3/GaAs (111) grown by molecular beam epitaxy. X-ray diffraction studies have been used to determine the epitaxial relationships between the rare earths, the LaF3 and the substrate. Further studies of symmetric and asymmetric reflections yielded the in-plane and perpendicular strain components of the rare earth layers. Such systems may be used to probe the effects of magnetoelastic interactions and dimensionality on magnetic ordering in rare earth metal films and multilayers.


2018 ◽  
Vol 82 (2) ◽  
pp. 313-327
Author(s):  
Markus B. Raschke ◽  
Evan J. D. Anderson ◽  
Jason Van Fosson ◽  
Julien M. Allaz ◽  
Joseph R. Smyth ◽  
...  

ABSTRACTThalénite-(Y), ideally Y3Si3O10F, is a heavy-rare-earth-rich silicate phase occurring in granite pegmatites that may help to illustrate rare-earth element (REE) chemistry and behaviour in natural systems. The crystal structure and mineral chemistry of thalénite-(Y) were analysed by electron microprobe analysis, X-ray diffraction and micro-Raman spectroscopy from a new locality in the peralkaline granite of the Golden Horn batholith, Okanogan County, Washington State, USA, in comparison with new analyses from the White Cloud pegmatite in the Pikes Peak batholith, Colorado, USA. The Golden Horn thalénite-(Y) occurs as late-stage sub-millimetre euhedral bladed transparent crystals in small miarolitic cavities in an arfvedsonite-bearing biotite granite. It exhibits growth zoning with distinct heavy-rare-earth element (HREE) vs. light-rare-earth element (LREE) enriched zones. The White Cloud thalénite-(Y) occurs in two distinct anhedral and botryoidal crystal habits of mostly homogenous composition. In addition, minor secondary thalénite-(Y) is recognized by its distinct Yb-rich composition (up to 0.8 atoms per formula unit (apfu) Yb). Single-crystal X-ray diffraction analysis and structure refinement reveals Y-site ordering with preferential HREE occupation of Y2 vs. Y1 and Y3 REE sites. Chondrite normalization shows continuous enrichment of HREE in White Cloud thalénite-(Y), in contrast to Golden Horn thalénite-(Y) with a slight depletion of the heaviest REE (Tm, Yb and Lu). The results suggest a hydrothermal origin of the Golden Horn miarolitic thalénite-(Y), compared to a combination of both primary magmatic followed by hydrothermal processes responsible for the multiple generations over a range of spatial scales in White Cloud thalénite-(Y).


Sign in / Sign up

Export Citation Format

Share Document