K-Ar dating of the Lower Palaeozoic K-bentonites from the Baltic Basin and the Baltic Shield: implications for the role of temperature and time in the illitization of smectite

Clay Minerals ◽  
2009 ◽  
Vol 44 (3) ◽  
pp. 361-387 ◽  
Author(s):  
J. Środoń ◽  
N. Clauer ◽  
W. Huff ◽  
T. Dudek ◽  
M. Banaś

AbstractMixed-layer illite-smectite samples from the Ordovician and Silurian K-bentonites of the Baltic Basin and the Baltic Shield (Norway, Sweden, Denmark, Poland and Estonia) were dated by K-Ar on several grain fractions and were studied by X-ray diffraction (XRD), both on oriented and random preparations, in order to reveal the conditions of smectite illitization in the area. Authigenic K-feldspar was also dated. The geographic pattern of the degree of illitization (% smectite in illite-smectite measured by XRD) is consistent with other indicators of palaeotemperatures (acritarchs, conodont alteration index, vitrinite reflectance, apatite fission track ages). It reveals the highest maximum palaeotemperatures (up to at least 200ºC) along the Norwegian and the German-Polish branches of the Caledonides and the lowest palaeotemperatures (120ºC) in the central part of the studied area. The distribution of K-Ar ages is not well correlated with this pattern, revealing a zone of older ages (Lower Devonian-Lower Carboniferous) between Denmark and Estonia, and areas of younger ages (Upper Devonian to Carboniferous/Permian boundary) to the north and south of this zone. The zone of older ages is interpreted as the result of illitization induced by a thermal event in front of the Caledonian orogenic belt (migration of hot metamorphic fluids?). The areas of younger ages are considered as representing deep burial illitization under a thick Silurian-Carboniferous sedimentary cover, perhaps augmented by a tectonic load. The K-Ar dates invalidate the hypothesis of a long-lasting low-temperature illitization as the mechanism of formation of the Estonian Palaeozoic illite-smectite. The ammonium content of illite-smectite from the Baltic K-bentonites reflects the proximity of organic-rich source rocks that underwent thermal alteration at the time of illite crystallization.

1971 ◽  
Vol 24 (4) ◽  
pp. 553-556
Author(s):  
D. J. Lindsay

By the North European Trade Axis is meant the trade route from Ushant and Land's End, up the English Channel, through the Dover Strait fanning out to serve eastern England, the north coast of continental Europe and leading to the Baltic Basin. Recent events in this area have left a feeling that some form of tightening of control is not only desirable, but is rapidly becoming imperative. There is a basic conflict between the two forms of shipping using the area: the local users who use the area more or less constantly, and the long-distance traders, usually much larger, which arrive in the area for a brief stay after a prolonged period at sea, which has usually been in good weather conditions. Frequently these latter ships have a very poor notion of the hornet's nest into which they are steaming when they arrive. The net result is all too often the same: the local users, with familiarity breeding contempt, wander about as they see fit, with scant regard for routing or the regulations; all too often the big ships arrive from sea with navigating staffs who are too confused, sometimes too ignorant—and sometimes too terrified—to do much more than blunder forward in a straight line hoping for the best. Quite obviously this is not a total picture, and there are large numbers of ships which navigate perfectly competently, but the minority of those which do not seem to be rising rapidly, and show every sign of continuing to increase.


2018 ◽  
Vol 6 (3) ◽  
pp. SH117-SH132 ◽  
Author(s):  
Krzysztof Sowiżdżał ◽  
Tomasz Słoczyński ◽  
Marek Stadtműller ◽  
Weronika Kaczmarczyk

We have developed a Lower Palaeozoic petroleum systems analysis in the selected zones of the Polish section of the Baltic Basin (onshore and offshore), which we carried out to assess the potential of shale rock formations as unconventional reservoirs. The areas of the Baltic Basin, which we analyzed represent a diversity of shale formations burial depths and thus different advancement of sediments compaction and organic matter transformation. Methods of dynamic petroleum systems modeling were applied with a 3D modeling workflow (PetroMod suite software). We considered an extensive array of data, including results of geochemical and petrophysical laboratory measurements, geophysical borehole data and, in selected locations — 3D seismic data. Five potentially perspective shale rock intervals (Silurian [2], Ordovician [2], and Upper Cambrian [1]) are identified and interpreted in terms of their geochemical and petrophysical properties. We calibrated the petroleum system models in terms of proper reproduction of diagenetic processes (pore pressure and porosity), thermal conditions (vitrinite reflectance, temperature), and kerogen kinetic model (organic matter transformation ratio, types of hydrocarbons generated). The results of the petroleum system simulations reveal that for the predominant part of the analyzed area, the achieved level of kerogen thermal maturity determines the generation of liquid hydrocarbons, which results in the present-day saturation of shale formations mainly with crude oil. We concluded that the highest generation yields as well as present-day hydrocarbons in place are observed for Ordovician Sasino Formation (onshore and offshore), Silurian/Llandovery Jantar member (onshore), and Upper Cambrian (alum shales) formation. Furthermore, a significant variation in the mass/volumes of accumulated hydrocarbons is observed within each of the shale formations being considered.


1992 ◽  
Vol 29 (5) ◽  
pp. 909-924 ◽  
Author(s):  
A. M. Grist ◽  
P. H. Reynolds ◽  
M. Zentilli ◽  
C. Beaumont

Apatite fission track and 40Ar/39Ar age spectrum data from sandstone drill-core minerals taken from depths of 2–5 km in nine wells from the Scotian Basin are presented and interpreted in terms of the thermal history of the basin and the provenance of its sediments. The focus of the study is a comparison of the data from these thermochronometers with each other and with previously published vitrinite reflectance and aromatization–isomerization (A–I) reactions in biomarker compounds from the same or nearby wells.Apatite fission track ages are generally in agreement with expectations in that they trend to zero at a depth of ~4 km (corrected bottom-hole temperature ~120 °C). Shallower (lower present temperature) samples are partially annealed; the degree of partial annealing correlates closely with the degree of A–I reactions. Both thermal indicators are activated over the temperature range 60–120 °C.Samples from two wells, Mic Mac J-77 and Erie D-26, are anomalous. They are more annealed than present formation temperatures would predict, an anomaly that is also indicated by the A–I data. These samples are interpreted as having experienced higher than present temperatures subsequent to deposition, possibly resulting from the passage of hot fluids related to localized volcanism or the sudden venting of an overpressured reservoir.K-feldspars record minor (< 20%) argon loss as a result of burial heating in the basin only at the greatest depths of the sampled range (> 4.3 km). This result is in agreement with the thermal models of the Scotian Basin and extrapolation of the A–I and fission track data to greater depths. The inferred argon loss implies an activation energy of 40 ± 4 kcal/mol for the smallest diffusion domains.The argon age spectra for samples that have not lost argon during residence in the basin provide evidence on the provenance of the sediments. K-feldspars from the Early Cretaceous Missisauga Formation have spectra that are similar to those obtained from K-feldspars from the Grenville Province of the Canadian Shield, whereas muscovites from the same formation give Cambrian to Carboniferous argon ages (mean 387 Ma), an indication of contributions from other source rocks. Corresponding data from the Jurassic Mohican Formation are similar to those reported for plutons from the southern Nova Scotia mainland (ca. 250–350 Ma argon ages). By implication, the Mohican Formation, which is the earliest postrift deposit, was derived from local sources inferred to be adjacent flank uplifts, whereas the Missisauga Formation was derived in part either directly or indirectly from the Grenvillian-aged interior of eastern Canada.


Clay Minerals ◽  
2009 ◽  
Vol 44 (4) ◽  
pp. 455-468 ◽  
Author(s):  
P. Somelar ◽  
K. Kirsimäe ◽  
J. Środoń

AbstractThe composition and particle morphology of diagenetic mixed-layer illite-smectite (I-S) in the shallow buried Ordovician Kinnekulle K-bentonite were studied to understand the process of illitization in the Baltic Basin. The same K-bentonite bed from 12 different locations in the Basin was sampled and analysed by means of X-ray diffraction (XRD), atomic-force microscopy (AFM) and K-Ar dating. Illite-smectite in the samples was identified as a highly illitic R1 type illite-smectite vermiculite (high-charge smectite) mixed-layer mineral with 63–78% illitic layers. Illite-smectite was characterized by log-normally distributed thin particles with an area-weighted mean thickness varying from 1.9 to 3.6 nm and 2.1 to 3.8 nm by XRD-PVP and AFM analysis, respectively. The K-Ar diagenetic ages of the mixed-layer minerals suggest an illitization age of 370 to 420 Ma that agrees with the latest phase of the Caledonian orogeny. Illitization of the Kinnekulle bentonite was probably driven by the intrusion of K-rich fluids.


2015 ◽  
Vol 20 (1) ◽  
pp. 337-406
Author(s):  
Svetlana V. Ivanova ◽  
Gennadiy N. Toschev

Abstract The paper discusses the taxonomy and autogenesis of the cycle of early ‘barrow cultures’ developed by the local communities of the Middle Dniester Area or, in a broader comparative context, the north-western Black Sea Coast, in the 4th/3rd-2nd millennium BC. The purpose of the study is to conduct an analytical and conceptual entry point to the research questions of the Dniester Contact Area, specifically the contacts between autochthonous ‘Late Eneolithic’ communities (Yamnaya, Catacomb and Babyno cultures) and incoming communities from the Baltic basin. The discussion of these cultures continues in other papers presented in this volume of Baltic-Pontic Studies.


1995 ◽  
Vol 35 (1) ◽  
pp. 579 ◽  
Author(s):  
C. J. Boreham

A detailed regional geochemical study of over 70 oils and condensates, eleven natural gases and over a hundred core samples from potential source rocks enable resolution of the generation and migration history of petroleum in the Bowen and Surat Basins. Biomarker analysis confirms a pre-Jurassic source for the petroleum. Stable carbon-isotope analysis further indicated a Permian-sourced petroleum and was able to differentiate a very minor and localised Triassic source contribution. The dominant source for the petroleum is terrestrial land plants as well as a minor contribution from bacteria and marine algae. In the north, Late Permian lower delta plain and alluvial Permian coals show the higher liquid potential compared with upper delta plain facies, while in the Taroom Trough, coals in the Blackwater Group have the highest liquid potential compared with mudrocks of the Blackwater Group, and sediments of the Back Creek Group. Initial liquid expulsion from the source rock occurred at vitrinite reflectance (Ro) of 0.65-0.7 per cent and continued to Ro of 1.05 per cent. This was followed by the main phase of gas generation between 1.05 per cent


2021 ◽  
Author(s):  
Tuomas Kärnä ◽  
Patrik Ljungemyr ◽  
Saeed Falahat ◽  
Ida Ringgaard ◽  
Lars Axell ◽  
...  

Abstract. This paper describes Nemo-Nordic 2.0, an operational marine forecast model for the Baltic Sea. The model is based on the NEMO (Nucleus for European Modelling of the Ocean) circulation model and the previous Nemo-Nordic 1.0 configuration by Hordoir et al. [Geosci. Model Dev., 12, 363–386, 2019]. The most notable updates include the switch from NEMO version 3.6 to 4.0, updated model bathymetry and revised bottom friction formulation. The model domain covers the Baltic and the North Seas with approximately 1 nautical mile resolution. Vertical grid resolution has been increased from 3 to 1 m in the surface layer. In addition, the numerical solver configuration has been revised to reduce artificial mixing to improve the representation of inflow events. Sea-ice is modeled with the SI3 model instead of LIM3. The model is validated against sea level, water temperature and salinity observations, as well as Baltic Sea ice chart data for a two-year hindcast simulation. Sea level root mean square deviation (RMSD) is typically within 10 cm throughout the Baltic basin. Seasonal sea surface temperature variation is well captured, although the model exhibits a negative bias of approximately −0.5 °C. Salinity RMSD is typically below 1.5 g/kg. The model captures the 2014 Major Baltic Inflow event and its propagation to the Gotland Deep. The skill analysis demonstrates that Nemo-Nordic 2.0 can reproduce the hydrographic features of the Baltic Sea.


Sign in / Sign up

Export Citation Format

Share Document