Clay mineralogy and shale instability: an alternative conceptual analysis

Clay Minerals ◽  
2014 ◽  
Vol 49 (2) ◽  
pp. 127-145 ◽  
Author(s):  
M. J . Wilson ◽  
L. Wilson

AbstractThe instability of shales in drilled formations leads to serious operational problems with major economic consequences for petroleum exploration and production. It is generally agreed that the nature of the clay minerals in shale formations is a primary causative factor leading to their instability, although the exact mechanism involved is more debateable. Currently, the principal cause of shale instability is considered to be volume expansion following the osmotic swelling of Nasmectite. However, illitic and kaolinitic shales may also be unstable, so that interlayer expansion cannot therefore be considered as a universal causative mechanism of shale instability. This review considers alternative scenarios of shale instability where the major clay minerals are smectite, illite, mixed-layer illite-smectite (I/S) and kaolinite respectively. The influence of interacting factors that relate to shale clay mineralogy such as texture, structure and fabric are discussed, as are the pore size distribution and the nature of water in clays and shales and how these change with increasing depth of burial. It is found from the literature that the thickness of the diffuse double layer (DDL) of the aqueous solutions associated with the charged external surfaces of clay minerals is probably of the same order or even thicker than the sizes of a significant proportion of the pores found in shales. In these circumstances, overlap of the DDLs associated with exposed outer surfaces of clay minerals on opposing sides of micropores (<2 nm in diameter) and mesopores (2–50 nm in diameter) in a lithostatically compressed shale would bring about electrostatic repulsion and lead to increased pore/ hydration pressure in smectitic, illitic and even kaolinitic shales. This pressure would be inhibited by the use of more concentrated K-based fluids which effectively shrink the thickness of the DDL towards the clay mineral surfaces in the pore walls. The use of soluble polymers would also encapsulate these clay mineral surfaces and so inhibit their hydration. In this scenario, the locus of action with respect to shale instability and its inhibition is moved from the interlamellar space of the smectitic clays to the charged external surfaces of the various clay minerals bounding the walls of the shale pores.

Clay Minerals ◽  
2006 ◽  
Vol 41 (1) ◽  
pp. 1-3 ◽  
Author(s):  
C. V. Jeans ◽  
R. J. Merriman

AbstractThe publication of The Clay Mineralogy of British Sediments by Perrin in 1971 collated several decades of clay mineral research in the British Isles and for the first time presented all the data in a stratigraphical framework. While it quickly became a useful source of information for geologists, engineers and soil scientists, it also revealed many gaps in clay mineral data through the geological succession, stimulating further research. Within ten years of publication, a successor to Perrin's book was under discussion by the Clay Minerals Group. Inevitably, the enthusiasm for the concept of the project gave way to the patience of a long gestation. A successor to Perrin (1971) became a standing item on the agenda of Clay Minerals Group Committee meetings, and the bane of many a Chairman's three years in office. By the mid-1990s the project began to show real progress, gathering momentum from the success of an international series of 'Cambridge clay mineral diagenesis conferences' (1981, 1984, 1986, 1989, 1993, 1998) that were supported by the oil industry. A timely injection of financial support from the Joint Association for Petroleum Exploration Courses (JAPEC) ensured a successful conclusion for the project.The cost of publication has been borne by three sponsors: the Clay Minerals Group, JAPEC (UK: training), and the Mineralogical Society. Consequently, the financing of this Special Volume of Clay Minerals is entirely independent of the usual costs of publishing the journal. We owe our particular thanks to Kevin Murphy, Editorial Manager, for his care and humour in guiding Clay minerals in onshore and offshore strata of the British Isles through publication.


2020 ◽  
Vol 22 (6) ◽  
pp. 1355-1367 ◽  
Author(s):  
Natacha Van Groeningen ◽  
Laurel K. ThomasArrigo ◽  
James M. Byrne ◽  
Andreas Kappler ◽  
Iso Christl ◽  
...  

Under anoxic conditions, clay minerals sorb dissolved Fe(ii) predominantly by forming surface precipitates, which transform into Fe(iii)-phases upon aeration.


2014 ◽  
Vol 59 (2) ◽  
pp. 489-500 ◽  
Author(s):  
Fanfei Min ◽  
Chenliang Peng ◽  
Shaoxian Song

Abstract Hydration layer on clay mineral surfaces is originated from the adsorption of polar water molecules and hydrated cations on the surfaces through unsaturated ionic bonds, hydrogen bonds and van der Waals bonds. It has attracted great attentions because of their important influences on the dispersive stability of the particles in aqueous solutions. This review highlighted the molecular structure of clay minerals, the origin of hydration layers on clay mineral surfaces, the hydration layer structural model, hydration force and the main parameters of affecting the hydration layers on clay minerals (crystal structure, cationic type and strength, and solution pH). Also, the research methods for hydration layers were briefly described, especially the determination of hydration layer thickness by the Einstein viscosity method and AFM method. In addition, the applications of the stability of fine clay mineral particles in aqueous suspensions were summarized.


1989 ◽  
Vol 31 (1) ◽  
pp. 41-56 ◽  
Author(s):  
Bertrand Blaise

AbstractOn Vancouver Island, the Dashwood Drift, Cowichan Head Formation, Quadra Sand, and Vashon Drift were deposited during late Pleistocene glacial and interstadial periods and show large variations in clay-mineral contents partly related to changing climatic conditions. Glacial deposits are characterized by iron-rich chlorite, illite (both well crystallized), and smectite with a morphology reflecting rapid derivation from volcanic rocks. The clay mineralogy of nonglacial deposits is more complex, and is marked by the presence of vermiculite, kaolinite, halloysite, and irregular mixed-layer minerals. Nonglacial clay minerals are poorly preserved and show a higher state of alteration due to pedogenesis. Large variations in nonglacial deposits compared to glacial deposits are also due to secondary factors such as selective sorting, soil and rock source variations, differences in sedimentary environment, and diagenesis. These secondary factors do not seem to obliterate significantly the climatic imprint on the clay minerals. These studies also permit the recognition of glacially reworked sediments, the determination of relationships between two units in the same section, and the establishment of the conditions of clay-mineral formation.


Clay Minerals ◽  
2006 ◽  
Vol 41 (1) ◽  
pp. 309-354 ◽  
Author(s):  
C. V. Jeans

AbstractThe regional distribution, mineralogy, petrology and chemistry of the detrital and authigenic clay minerals associated with the Permo-Triassic strata (excluding the Rotliegend: see Ziegler, 2006; this volume), of the onshore and offshore regions of the British Isles are reviewed within their stratigraphical framework. The origin of these clay minerals is discussed in relation to current hypotheses on the developments of the Mg-rich clay mineral assemblages associated with the evaporitic red-bed Germanic facies of Europe and North Africa.Composite clay mineral successions are described for seven regions of the British Isles — the Western Approaches Trough; SW England; South Midlands; Central Midlands; the Cheshire Basin; NE Yorkshire; and the Central North Sea. The detrital clay mineral assemblages of the Early Permian strata are variable, consisting of mica, smectite, smectite-mica, kaolin and chlorite, whereas those of the Late Permian and the Trias are dominated by mica, usually in association with minor Fe-rich chlorite. The detrital mica consists of a mixture of penecontemporaneous ferric mica, probably of pedogenic origin, and recycled Pre-Permian mica. In the youngest Triassic strata (Rhaetian), the detrital clay assemblages may contain appreciable amounts of poorly defined collapsible minerals (irregular mixed-layer smectite-mica-vermiculite) and kaolin, giving them a Jurassic aspect. There are two types of authigenic clay mineral assemblages. Kaolin may occur as a late-stage diagenetic mineral where the original Permo-Triassic porewaters of the sediment have been replaced by meteoritic waters. A suite of early-stage diagenetic clay minerals, many of them Mg-rich, are linked to the evaporitic red-bed facies — these include sepiolite, palygorskite, smectite, irregular mixed- layer smectite-mica and smectite-chlorite, corrensite, chlorite and glauconite (sensu lato). The sandstones and mudstones of the onshore regions of the British Isles display little or no difference in their detrital and authigenic clay mineral assemblages. In contrast, the sandstones of the offshore regions (North Sea) show major differences with the presence of extensive chloritic cements containing Mg-rich and Al-rich chlorite, irregular mixed-layer serpentine-chlorite, and mica.


Geophysics ◽  
2008 ◽  
Vol 73 (3) ◽  
pp. J1-J13 ◽  
Author(s):  
Steven Arcone ◽  
Steven Grant ◽  
Ginger Boitnott ◽  
Benjamin Bostick

We determined the complex permittivity and clay mineralogy of grain-size fractions in a wet silt soil. We used one clay-size fraction and three silt-size fractions, measured permittivity with low error from [Formula: see text] with time-domain spectroscopy, and estimated mineral weight percentages using X-ray diffraction (XRD). The volumetric water contents were near 30%, and the temperature was [Formula: see text]. For the whole soil, standard fractionation procedures yielded 2.4% clay-size particles by weight, but XRD showed that the phyllosilicate clay minerals kaolinite, illite, and smectite made up 17% and were significantly present in all fractions. Above approximately [Formula: see text], all real parts were similar. Below approximately [Formula: see text], the real and imaginary permittivities increased with decreasing grain size as frequency decreased, and the imaginary parts became dominated by direct-current conduction. Similarly, below approximately [Formula: see text], the measured permittivity of montmorillonite, a common smectite, dominated that of the other clay minerals. Total clay mineral and smectite mass fractions consistently increased with decreasing grain size. Below [Formula: see text], a model with progressively increasing amounts of water and parameters characteristic of montmorillonite matches the data well for all fractions, predicts permittivities characteristic of free water in smectite structural galleries, and shows that the similar real parts above [Formula: see text] are caused by a small suppression of the high-frequency static value of water permittivity by the smectite. We conclude that the clay mineral content, particularly smectite, appears to be responsible for permittivity variations between grain-size fractions. Small model mismatches in real permittivity near the low-frequency end and the greater fractions of kaolinite and illite suggest that the total clay mineral content might have been important for the coarser fractions.


2020 ◽  
Vol 23 (3-4) ◽  
Author(s):  
Rieko ADRIAENS ◽  
Noël VANDENBERGHE

Although the main stratigraphic frame of the Neogene in North Belgium is well established still several issues remain. This is in particular the case at the boundaries of lithostratigraphic units and where lateral facies have developed. Not only are more biostratigraphic data needed but also the commonly used geophysical well logging needs a better information on the precise influence of the variable mineralogy in the sediments. In particular glauconite, muscovite and clay mineralogy need a detailed analysis. Such an analysis is carried out on the Antwerp Member of the Berchem Formation, the Diest Formation, the Kasterlee Formation and the Mol Formation with particular emphasis on the boundary intervals between these units. Clay minerals, glauconite, feldspars and muscovite are analyzed. Interstratified glauconite/smectite appears to be common in the low abundant dispersed clay fraction of sand rich in glauconite pellets. Marine units generally consist of detrital smectite-rich assemblages while kaolinite becomes more abundant in units under more continental influence. The presence of Fe-rich vermiculite in a clayey top facies of the Diest Formation indicates the influx of soil material containing weathered glauconite. It is common to find that the basal sediments of a new unit contain the mineralogical heritage of the underlying unit. The clay mineral content has helped to differentiate between units, to locate the boundaries between units and to understand the reworking that occurred at the base of new stratigraphic units. The mineralogical information can also be used to interpret the natural radioactivity and resistivity signals in the borehole logs.


1979 ◽  
Vol 59 (1) ◽  
pp. 37-58 ◽  
Author(s):  
H. KODAMA

A literature survey was conducted to collect mineralogical data of Canadian soils. In the past 40 years, clay mineralogical data of varying precision have been reported for approximately 1200 samples from more than 380 pedons. Based on the data, (1) the distribution of clay minerals was examined physiographically, (2) an investigation was made to relate specific changes in clay minerals of pedons within a physiographic region to taxonomy, and (3) a comparison was made of the clay mineral alteration in the pedons of the same order in different physiographic regions. The results indicated that virtually no or minor alterations of clay minerals had occurred in pedons of many Canadian soils with the exception of Podzolic soils and to a limited extent, Brunisolic, Luvisolic and Gleysolic soils. In the Podzolic soils, chlorite disappeared or diminished in surface horizons, and micas and possibly some chlorites were transformed by hydration into partially or fully expansible clay minerals. For general soil clay mineral characterization, the analyses of one subsoil sample of a pedon would appear to be adequate for most soil orders. However, clay mineralogy has a potential to go much further in distinguishing minor changes and subtle differences in clay minerals. Such information would be useful in specific studies of soil development and in assessing trends in early stages of weathering. The current priorities of soil clay mineralogy in Canada should be improvement of methods of quantification and increasing the standardization of methodology and interpretation of results.


1957 ◽  
Vol 8 (1) ◽  
pp. 45 ◽  
Author(s):  
JS Hosking ◽  
ME Neilson ◽  
AR Carthew

A study of the mineralogy of the clay, silt, and sand fractions of 24 soils has shown that the clay minerals are distributed through all fractions of the soils. In granitic and other soils which are characterized by kaolinite, with mica, illite, or montmorillonoids sometimes present though subsidiary, the clay mineral content of the silts may be as high as in the clay fraction though on the average it is about 50 per cent.; in the sands, however, clay minerals are negligible. In basaltic or basic soils which are characterized by halloysite or nontronite or both, with other types subsidiary, the clay mineral content of the silts is somewhat less than that in granitic soils, but persists a t an average of 20 per cent, in the sands. The higher concentration of kaolinite in the silt fractions reflects the larger particle size of this mineral. The concentration of halloysite or nontronite in the sand fractions, and even the concentrations reached in the silts of soils containing these minerals, reflect their fibrous nature which allows the formation of stable interlaced aggregates. Overall the two types of mineral, altered (authigenic) and residual (allogenic), vary continuously with particle size; the former, constituting the bulk of the colloids, decrease to small amounts in the coarse sand, while the latter necessarily show the reverse effect. The silts contain both types of mineral in about equal amounts and thus represent the intermediate particle size of mechanical breakdown and chemical alteration.


2019 ◽  
Vol 10 (1) ◽  
pp. 140
Author(s):  
Suratta BUNSOMBOONSAKUL ◽  
Penjai SOMPONGCHAIYAKUL ◽  
Zhifei LIU ◽  
Akkaneewut CHABANGBORN ◽  
Anond SNIDVONGS

This study presents high-resolution clay mineralogy of Core MASS-III-10, located in the southeastern Andaman Sea. The study aimed to investigate terrigenous sedimentary input from various potential provenances throughout different periods of geological time. The clay mineral assemblages of MASS-III-10 reveal a high amount of smectite at 73% (65-79%), a moderate kaolinite at 12% (10-17%), and a low illite and chlorite content(<15%) over the last 45 ka. Provenance analysis suggests the most fine-grained terrigenous sediments originated from the Irrawaddy Delta Shelf (IDS), with minor sediments deriving from the Andaman Islands, the East Continental Shelf (ECS), and Sumatra provenance. The results show that IDS were predominantly smectite (~44%) while the ECS largely produced kaolinite (47%). The provenance interpretation based on the smectite content revealed that over time there has been no change in the main source of sediment in the Andaman Sea, despite changes in the volume of sedimentary input. Since the last glaciation, the Myanmar provenance (including IDS) has always contributed clay minerals, while other sources made up only minor contributions to the Andaman Sea. The clay minerals from the Myanmar provenance increased when the sea level was at a low stand (MIS 2), potentially due to shoreline retreat which enabled easier transportation of sediment from other sources. During the interglacial period (MIS 1 and 3), the study found a decrease in Myanmar-sourced clay minerals, which may be because the higher sea level made clay mineral deposition more difficult.


Sign in / Sign up

Export Citation Format

Share Document