Conditions of phlogopite crystallization in ultrapotassic volcanic rocks

1983 ◽  
Vol 47 (342) ◽  
pp. 11-19 ◽  
Author(s):  
A. D. Edgar ◽  
M. Arima

AbstractPhlogopite occurs as an early crystallizing mineral in many ultrapotassic lavas of basaltic affinities. Based on high-pressure experiments in lavas of these compositions, the early crystallization of phlogopite is controlled in large part by the bulk compositions of the liquids from which it crystallizes but also by the total pressure and by the aH2O, with early phlogopite forming under a narrow range of aH2O, less than that represented by H2O-saturated conditions. Variations in fO2 do not appreciably affect phlogopite crystallization but high aCO2 suppresses its crystallization. In ultrapotassic magmas, phlogopite will preferentially incorporate K2O, TiO2, MgO, and Al2O3 relative to the coexisting early silicate minerals, olivine and clinopyroxene, and thus, on fractionation of these minerals, phlogopite will be more effective in reducing these oxides in residual liquids. Phenocrysts and microphenocrysts of phlogopite in ultrapotassic lavas are directly related with respect to their K/Ti, K/Al, K/(K + Na), and Mg/(Mg + Fe) ratios. Textural relations suggest phlogopite may form by reaction relationships involving liquid with olivine, and/or clinopyroxene. Such relationships are supported by the experimental studies on ultrapotassic rock compositions.

2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Vincenzo Petrone ◽  
Adolfo Senatore ◽  
Vincenzo D'Agostino

This paper presents the application of an improved Yasutomi correlation for lubricant viscosity at high pressure in a Newtonian elastohydrodynamic line contact simulation. According to recent experimental studies using high pressure viscometers, the Yasutomi pressure-viscosity relationship derived from the free-volume model closely represents the real lubricant piezoviscous behavior for the high pressure typically encountered in elastohydrodynamic applications. However, the original Yasutomi correlation suffers from the appearance of a zero in the function describing the pressure dependence of the relative free volume thermal expansivity. In order to overcome this drawback, a new formulation of the Yasutomi relation was recently developed by Bair et al. This new function removes these concerns and provides improved precision without the need for an equation of state. Numerical simulations have been performed using the improved Yasutomi model to predict the lubricant pressure-viscosity, the pressure distribution, and the film thickness behavior in a Newtonian EHL simulation of a squalane-lubricated line contact. This work also shows that this model yields a higher viscosity at the low-pressure area, which results in a larger central film thickness compared with the previous piezoviscous relations.


2004 ◽  
Vol 68 (1) ◽  
pp. 83-100 ◽  
Author(s):  
E. Salvioli-Mariani ◽  
L. Toscani ◽  
D. Bersani

AbstractThe lamproite of Gaussberg is an ultrapotassic rock where leucite, olivine and clinopyroxene microphenocrysts occur in a glass-rich groundmass, containing microliths of leucite, clinopyroxene, apatite, phlogopite and rare K-richterite.Abundant silicate melt inclusions occur in olivine, leucite and, rarely, in clinopyroxene microphenocrysts. Raman investigations on melt inclusions showed the presence of pure CO2 in the shrinkage bubbles. On the other hand, the glass of the groundmass is CO2-poor and contains up to 0.70 wt.% of dissolved H2O, as estimated by infrared spectra. It is inferred that CO2 was released at every stage of evolution of the lamproite magma (CO2-rich shrinkage bubbles), whereas H2O was retained for longer in the liquid. At Gaussberg, CO2 seems to have a major role at relatively high pressure where it favoured the crystallization of H2O-poor microphenocrysts; the uprise of the magma to the surface decreased the solubility of CO2 and caused a relative increase in water activity. As a consequence, phlogopite and K-richterite appeared in the groundmass.The glass composition of both the groundmass and melt inclusions suggests different evolutions for the residual liquids of the investigated samples. Sample G886 shows the typical evolution of a lamproite magma, where the residual liquid evolves toward peralkaline and Na-rich composition and crystallizes K-richterite in the latest stage. Sample G895 derives from mixing/mingling of different batches of magma; effectively glasses from melt inclusions in leucite and clinopyroxene are more alkaline than those found in early crystallized olivine. Leucite and clinopyroxene crystallized early from a relatively more alkaline batch of lamproite magma and, successively, a less alkaline, olivinebearing magma batch assimilated them during its rise to the surface.


2019 ◽  
Vol 10 (3) ◽  
pp. 5-15
Author(s):  
M. L Nuzhdin

Often in construction practice there is a need to strengthen the pile foundation of buildings and structures. The traditional methods include the implementation of additional, as a rule, bored piles with the subsequent erection of a grillage incorporating them into operation. Often, this work has to be done in the conditions of dense urban development, in cramped rooms of the basement, etc., which leads to significant technological difficulties. One of the alternative ways to strengthen pile foundations is the method of high-pressure group injection, which consists in injecting a movable cement-sand mortar into the soil under pressure that exceeds its structural strength. As a result, after its hardening, solid injection bodies are formed at the base, reinforcing the soil base. The article describes the results of experiments to assess the impact of the layout of hard inclusions on the deformability of the soil foundation of the pile foundation model. The experiments were carried out in a small soil tray, which was filled with medium-grained loose sand. The piles were modeled with metal rods, the pile grillage with a metal square stamp. The pile foundation model included 9 piles arranged in a square grid. As injection bodies, gravel grains of various sizes and shapes were used. The studies included 10 series of experiments (each experiment was repeated at least 3 times): the volume of the inclusions used, their sizes, the positioning step in the plan and in depth varied. As a result of the analysis of the performed experiments, conclusions were formulated regarding the purpose of the optimal layout of hard inclusions when strengthening the soil foundation of pile foundations by high-pressure injection of mobile cement-sand mixtures.


1982 ◽  
Author(s):  
D. C. Rabe ◽  
W. W. Copenhaver ◽  
M. S. Perry

A transportable automatic data acquisition system to obtain high pressure compressor entrance profiles in an F-100 Series 3 gas turbine engine is described. The system was developed, assembled, and tested at Wright-Patterson Air Force Base and transported to a remote location for implementation in a sea level engine test. Acquisition of data was controlled through a Hewlett Packard Model 9825T desktop calculator, preprogrammed to display airflow data in engineering units during the test. Entrance profiles of total and static pressure, temperature, and flow angle for two axial locations are presented. A wedge probe sensing element was positioned at 12 radial locations by remote traversing mechanisms to obtain these profiles. For a total pressure range of 18 to 46 psia (0.13 to 0.32 MPa), acquisition uncertainties in static and total pressure were reduced to below ± percent of measured values by optimizing data system component uncertainties.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Sabine Bauinger ◽  
Emil Goettlich ◽  
Franz Heitmeir ◽  
Franz Malzacher

For this work, reality effects, more precisely backward-facing steps (BFSs) and forward-facing steps (FFSs), and their influence on the flow through a two-stage two-spool turbine rig under engine-relevant conditions were experimentally investigated. The test rig consists of an high pressure (HP) and an low pressure (LP) stage, with the two rotors rotating in opposite direction with two different rotational speeds. An S-shaped transition duct, which is equipped with turning struts (so-called turning mid turbine frame (TMTF)) and making therefore a LP stator redundant, connects both stages and leads the flow from a smaller to a larger diameter. This test setup allows the investigation of a TMTF deformation, which occurs in a real aero-engine due to non-uniform warming of the duct during operation—especially during run up—and causes BFSs and FFSs in the flow path. This happens for nonsegmented ducts, which are predominantly part of smaller engines. In the case of the test rig, steps were not generated by varying temperature but by shifting the TMTF in horizontal direction while the rotor and its casing were kept in the same position. In this way, both BFSs and FFSs between duct endwalls and rotor casing could be created. In order to avoid steps further downstream of the interface between HP rotor and TMTF, the complete aft rig was moved laterally too. In this case, the aft rig incorporates among others the LP rotor, the LP rotor casing, and the deswirler downstream of the LP stage. In order to catch the influence of the steps on the whole flow field, 360 deg rake traverses were performed downstream of the HP rotor, downstream of the duct, and downstream of the LP rotor with newly designed, laser-sintered combi-rakes for the measurement of total pressure and total temperature. Only the compact design of the rakes, which can be easily realized by additive manufacturing, makes the aforementioned 360 deg traverses in this test rig possible and allows a number of radial measurements positions, which is comparable to those of a five-hole probe. To get a more detailed information about the flow, also five-hole probe measurements were carried out in three measurement planes and compared to the results of the combi-rakes.


Author(s):  
Mehmet Mersinligil ◽  
Jean-Franc¸ois Brouckaert ◽  
Julien Desset

This paper presents the first experimental engine and test rig results obtained from a fast response cooled total pressure probe. The first objective of the probe design was to favor continuous immersion of the probe into the engine to obtain time series of pressure with a high bandwidth and therefore statistically representative average fluctuations at the blade passing frequency. The probe is water cooled by a high pressure cooling system and uses a conventional piezo-resistive pressure sensor which yields therefore both time-averaged and time-resolved pressures. The initial design target was to gain the capability of performing measurements at the temperature conditions typically found at high pressure turbine exit (1100–1400K) with a bandwidth of at least 40kHz and in the long term at combustor exit (2000K or higher). The probe was first traversed at the turbine exit of a Rolls-Royce Viper turbojet engine, at exhaust temperatures around 750 °C and absolute pressure of 2.1bars. The probe was able to resolve the high blade passing frequency (≈23kHz) and several harmonics up to 100kHz. Besides the average total pressure distributions from the radial traverses, phase-locked averages and random unsteadiness are presented. The probe was also used in a virtual three-hole mode yielding unsteady yaw angle, static pressure and Mach number. The same probe was used for measurements in a Rolls-Royce intermediate pressure burner rig. Traverses were performed inside the flame tube of a kerosene burner at temperatures above 1600 °C. The probe successfully measured the total pressure distribution in the flame tube and typical frequencies of combustion instabilities were identified during rumble conditions. The cooling performance of the probe is compared to estimations at the design stage and found to be in good agreement. The frequency response of the probe is compared to cold shock tube results and a significant increase in the natural frequency of the line-cavity system formed by the conduction cooled screen in front of the miniature pressure sensor were observed.


Author(s):  
Jan Mihalyovics ◽  
Christian Brück ◽  
Dieter Peitsch ◽  
Ilias Vasilopoulos ◽  
Marcus Meyer

The objective of the presented work is to perform numerical and experimental studies on compressor stators. This paper presents the modification of a baseline stator design using numerical optimization resulting in a new 3D stator. The Rolls Royce in-house compressible flow solver HYDRA was employed to predict the 3D flow, solving the steady RANS equations with the Spalart-Allmaras turbulence model, and its corresponding discrete adjoint solver. The performance gradients with respect to the input design parameters were used to optimize the stator blade with respect to the total pressure loss over a prescribed incidence range, while additionally minimizing the flow deviation from the axial direction at the stator exit. Non-uniform profile boundary conditions, being derived from the experimental measurements, have been defined at the inlet of the CFD domain. The presented results show a remarkable decrease in the axial exit flow angle deviation and a minor decrease in the total pressure loss. Experiments were conducted on two compressor blade sets investigating the three-dimensional flow in an annular compressor stator cascade. Comparing the baseline flow of the 42° turning stator shows that the optimized stator design minimizes the secondary flow phenomena. The experimental investigation discusses the impact of steady flow conditions on each stator design while focusing on the comparison of the 3D optimized design to the baseline case. The flow conditions were investigated using five-hole probe pressure measurements in the wake of the blades. Furthermore, oil-flow visualization was applied to characterize flow phenomena. These experimental results are compared with the CFD calculations.


Oil Shale ◽  
2019 ◽  
Vol 36 (1) ◽  
pp. 32 ◽  
Author(s):  
A ZHABIN ◽  
A POLYAKOV ◽  
E AVERIN ◽  
W KHACHATURIAN

Sign in / Sign up

Export Citation Format

Share Document