Debattistiite, Ag9Hg0.5As6S12Te2, a new Te-bearing sulfosalt from Lengenbach quarry, Binn valley, Switzerland: description and crystal structure

2012 ◽  
Vol 76 (3) ◽  
pp. 743-750 ◽  
Author(s):  
A. Guastoni ◽  
L. Bindi ◽  
F. Nestola

AbstractDebattistiite, ideally Ag9Hg0.5As6S12Te2, is a new mineral (IMA-CNMNC 2011-098) from the Lengenbach quarry in the Binn Valley, Valais, Switzerland. It occurs as very rare tabular euhedral crystals up to 150 μm across in cavities in dolomitic marble, associated with realgar, rutile, trechmannite and hutchinsonite. Debattistiite is opaque with a metallic lustre and a grey streak. It is brittle; the Vickers hardness (VHN25) is 80 kg mm–2 (range: 65–94), corresponding to a Mohs hardness of 2–2½. In reflected light debattistiite is dark grey, highly bireflectant and weakly pleochroic from dark grey to a slightly greenish grey. Between crossed polars it is highly anisotropic with brownish to blue rotation tints. Internal reflections are absent. Reflectance percentages for the four COM wavelengths (Rmin and Rmax) are 27.2, 34.5 (471.1 nm), 25.5, 31.0 (548.3 nm), 22.9, 28.4 (586.6 nm), and 20.1, 25.2 (652.3 nm), respectively.Debattistiite is triclinic, space group P1, with a = 7.832(5), b = 8.606(4), c = 10.755(5) Å, α = 95.563(9), β = 95.880(5), γ = 116.79(4)°, V = 635.3(6) Å3 and Z = 1. The crystal structure [R1 = 0.0826 for 795 reflections with I > 2σ(I)] consists of corner-sharing AsS3 pyramids forming three-membered distorted rings linked by Ag atoms in triangular or tetrahedral coordination.The five strongest powder-diffraction lines [d in Å (I/I0) (hkl)] are as follows: 10.56 (6) (001); 3.301 (5) (2̄12); 2.991 (4) (21̄2); 2.742 (2̄1̄1) and 2.733 (10) (2̄30). A mean of nine electron microprobe analyses gave: Ag 44.88, Hg 4.49, As 20.77, S 17.72, Te 11.82; total 99.68 wt.%, which corresponds to Ag9.02Hg0.49As6.012S11.98Te2.01, on the basis of 29.5 atoms. The new mineral is named for Luca De Battisti, a systematic mineralogist and expert on the minerals of Lengenbach quarry.

2012 ◽  
Vol 76 (5) ◽  
pp. 1153-1163 ◽  
Author(s):  
L. Bindi ◽  
F. Nestola ◽  
A. Guastoni ◽  
L. Peruzzo ◽  
M. Ecker ◽  
...  

AbstractRaberite, ideally Tl5Ag4As6SbS15, is a new mineral from Lengenbach quarry in the Binn Valley, Valais, Switzerland. It occurs very rarely as euhedral crystals up to 150 m m across associated with yellow needle-like smithite, realgar, hatchite and probable trechmannite, edenharterite, jentschite and two unidentified sulfosalts. Raberite is opaque with a metallic lustre and has a dark brown–red streak. It is brittle with a Vickers hardness (VHN10) of 52 kg mm–2 (range 50–55) corresponding to a Mohs hardness of 2½–3. In reflected light raberite is moderately bireflectant and very weakly pleochroic from light grey to a slightly greenish grey. It is very weakly anisotropic with greyish to light blue rotation tints between crossed polars. Internal reflections are absent. Reflectance percentages for the four COM wavelengths [listed as Rmin, Rmax, (λ)] are 30.6, 31.8 (471.1 nm), 28.1, 29.3 (548.3 nm), 27.1, 28.0 (586.6 nm), and 25.8, 26.9 (652.3 nm).Raberite is triclinic, space group P1, with a = 8.920(1), b = 9.429(1), c = 20.062(3) Å, α = 79.66(1), β = 88.84(1), γ = 62.72(1)º, V = 1471.6(4) Å3 and Z = 2. The crystal structure [R1 = 0.0827 for 2110 reflections with I > 2σ(I)] consists of columns of nine-coordinate Tl atoms forming irregular polyhedra extending along [001] and forming sheets parallel to (010). The columns are decorated by cornersharing MS3 pyramids (M = As, Sb) and linked by AgS3 triangles. Of the seven M positions, one is dominated by Sb and the others by As; the mean M-S bond distances reflect As ↔ Sb substitution at these sites.The eight strongest lines in the powder diffraction pattern [dcalc in Å (I) (hkl)] are: 3.580 (100) (11̄3); 3.506 (58) (1̄23); 3.281 (73) (006); 3.017 (54) (1̄2̄3); 3.001 (98) (133); 2.657 (51) (226); 2.636 (46) (300); 2.591 (57) (330). A mean of 9 electron microprobe analyses gave Tl 39.55(13), Ag 18.42(8), Cu 0.06(2), As 17.08(7), Sb 5.61(6), S 19.15(11); total 99.87 wt.%, which corresponds to Tl4.85Ag4.28Cu0.02As5.72Sb1.16S14.97 with 31 atoms per formula unit. The new mineral has been approved by the IMA-CNMNC Commission (IMA 2012-017) and is named for Thomas Raber, an expert on Lengenbach minerals.


2013 ◽  
Vol 77 (3) ◽  
pp. 327-334 ◽  
Author(s):  
S. Anashkin ◽  
A. Bovkun ◽  
L. Bindi ◽  
V. Garanin ◽  
Y. Litvin

AbstractKudryavtsevaite, ideally Na3MgFe3+Ti4O12, is a new mineral from kimberlitic rocks of the Orapa area, Botswana. It occurs as rare prismatic crystals, up to 100 μm m across, associated with Mg-rich ilmenite, freudenbergite and ulvöspinel. Kudryavtsevaite is opaque with a vitreous lustre and shows a black streak. It is brittle; the Vickers hardness (VHN100) is 901 kg mm−2 (range: 876–925) (Mohs hardness ∼6). In reflected light, kudryavtsevaite is moderately bireflectant and very weakly pleochroic from dark grey to a slightly bluish grey. Under crossed polars, it is very weakly anisotropic with greyish-bluish rotation tints. Internal reflections are absent. Reflectance values (%), Rmin and Rmax, are: 21.3, 25.4 (471.1 nm), 20.6, 24.1 (548.3 nm), 20.0, 23.5 (586.6 nm) and 19.1, 22.4 (652.3 nm).Kudryavtsevaite is orthorhombic, space group Pnma, with a = 27.714(1), b = 2.9881(3), c = 11.3564(6) Å, V = 940.5(1) Å3, and Z = 4. The crystal structure [R1 = 0.0168 for 819 reflections with I > 2σ(I)] consists of edge-sharing and corner-sharing chains composed of Mg, Fe3+ and Ti atoms coordinated by six atoms of oxygen and running along the b axis, with Na filling the tunnels formed by the chains. The eight strongest powder-diffraction lines [d in Å (I/I0) (hkl)] are: 7.17 (100) (301), 4.84 (70) (302), 2.973 (35) (901), 2.841 (50) (004), 2.706 (50) (902), 2.541 (50) (312), 2.450 (70) (611), and 2.296 (45) (612). The average results of 12 electron microprobe analyses gave (wt.%): Na2O 16.46(15), CaO 1.01(3), MgO 5.31(5), Fe2O3 22.24(32), Cr2O3 1.05(6), Al2O3 0.03(2), TiO2 53.81(50), total 99.91, corresponding to the empirical formula (Na2.89Ca0.10)Σ2.99(Ti3.67Fe1.523+Mg0.72Cr0.08)Σ5.99O12, or ideally Na3MgFe3+Ti4O12.The new mineral has been approved by the IMA-CNMNC and named for Galina Kudryavtseva (1947–2006), a well known Russian mineralogist and founder of the Diamond Mineralogy Laboratory and scientific school for investigation of diamond mineralogy and geochemistry at the Lomonosov State University in Moscow, Russia.


2014 ◽  
Vol 78 (3) ◽  
pp. 739-745 ◽  
Author(s):  
A. R. Cabral ◽  
R. Skála ◽  
A. Vymazalová ◽  
A. Kallistová ◽  
B. Lehmann ◽  
...  

AbstractKitagohaite, ideally Pt7Cu, is a new mineral from the Lubero region of North Kivu, Democratic Republic of the Congo. The mineral occurs as alluvial grains that were recovered together with other Pt-rich intermetallic compounds and Au. Kitagohaite is opaque, greyish white and malleable and has a metallic lustre and a grey streak. In reflected light, kitagohaite is white and isotropic. The crystal structure of kitagohaite is cubic, space group Fmm, of the Ca7Ge type, with a = 7.7891(3) Å, V = 472.57(5) Å3 and Z = 4. The strongest diffraction lines [d in Å(I)(hkl)] are: 2.246 (100)(222), 1.948(8)(004), 1.377 (77)(044), 1.174(27)(622), 1.123 (31)(444) and 0.893 (13)(662). The Vickers hardness is 217 kg mm−2 (VHN100), which is equivalent to a Mohs hardness of 3½ and the calculated density is 19.958(2) g cm−3. Electron-microprobe analyses gave a mean value (n = 13) of 95.49 wt.% Pt and 4.78 wt.%Cu, which corresponds to Pt6.93Cu1.07 on the basis of eight atoms. The new mineral is named for the Kitagoha river, in the Lubero region.


2014 ◽  
Vol 78 (1) ◽  
pp. 1-9 ◽  
Author(s):  
L. Bindi ◽  
F. Nestola ◽  
E. Makovicky ◽  
A. Guastoni ◽  
L. De Battisti

AbstractPhilrothite, ideally TlAs3S5, is a new mineral from the Lengenbach quarry in the Binn Valley, Valais, Switzerland. It occurs as very rare crystals up to 200 mm across on realgar associated with smithite, rutile and sartorite. Philrothite is opaque with a metallic lustre and shows a dark brown streak. It is brittle; the Vickers hardness (VHN25) is 128 kg/mm2 (range: 120–137) (Mohs hardness of 3–3½). In reflected light philrothite is moderately bireflectant and weakly pleochroic from dark grey to light grey. Under crossed polars it is anisotropic with grey to bluish rotation tints. Internal reflections are absent. Reflectance percentages for the four COM wavelengths (Rmin and Rmax) are: 26.5, 28.8 (471.1 nm), 25.4, 27.2 (548.3 nm), 24.6, 26.3 (586.6 nm) and 24.0, 25.1 (652.3 nm), respectively.Philrothite is monoclinic, space group P21/c, with a = 8.013(2), b = 24.829(4), c = 11.762(3) Å, β = 132.84(2)°, V = 1715.9(7) Å3, Z = 8. It represents the N = 4 homologue of the sartorite homologous series. In the crystal structure [R1 = 0.098 for 1217 reflections with I > 2σ(I)], Tl assumes tricapped prismatic sites alternating to form columns perpendicular to the b axis. Between the zigzag walls of Tl coordination prisms, coordination pyramids of As(Sb) form diagonally-oriented double layers separated by broader interspaces which house the lone electron pairs of these elements.The eight strongest calculated powder-diffraction lines [d in Å(I/I0) (hkl)] are: 12.4145 (52) (020); 3.6768 (100) (61); 3.4535 (45) (131); 3.0150 (46) (53); 2.8941 (52) (81); 2.7685 (76) (230); 2.7642 (77) (34); 2.3239 (52) (092). A mean of five electron microprobe analyses gave Tl 26.28(12), Pb 6.69(8), Ag 2.50(4), Cu 0.04(2), Hg 0.07(2), As 32.50(13), Sb 3.15(3), S 26.35(10), total 97.58 wt.%, corresponding, on the basis of a total of nine atoms, to (Tl0.789Pb0.198)∑=0.987 (As2.662Sb0.159Ag0.142Cu0.004Hg0.002)∑=2.969S5.044. The new mineral has been approved by the Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical Association (2013-066) and named for Philippe Roth (b. 1963), geophysicist and well known mineral expert on the Lengenbach minerals for more than 25 years.


2017 ◽  
Vol 81 (2) ◽  
pp. 369-381 ◽  
Author(s):  
F. Cámara ◽  
E. Sokolova ◽  
Y. A. Abdu ◽  
F. C. Hawthorne ◽  
T. Charrier ◽  
...  

AbstractFogoite-(Y), Na3Ca2Y2Ti(Si2O7)2OF3, is a new mineral from the Lagoa do Fogo, São Miguel Island, the Azores. It occurs in cavities as highly elongated (on [001]) prisms, up to 2000 μm long and 50 μm× 50 μm in cross-section, associated with sanidine, astrophyllite, fluornatropyrochlore, ferrokentbrooksite, quartz and ferro-katophorite. Crystals are generally transparent and colourless, with vitreous lustre, occasionally creamy white. Fogoite-(Y) has a white streak, splintery fracture and very good {100} cleavage. Mohs hardness is ∼5. Dcalc. = 3.523 g/cm3. It is biaxial (+) with refractive indices (λ = 590 nm) α = 1.686(2), β = 1.690(2), γ = 1.702(5); 2Vmeas. = 57(1)° and 2Vcalc. = 60°. It is nonpleochroic. Fogoite-(Y) is triclinic, space group P1, a = 9.575(6), b = 5.685(4), c = 7.279(5) Å, α = 89.985(6), β = 100.933(4), γ = 101.300(5)°, V = 381.2 (7) Å3. The six strongest reflections in the powder X-ray diffraction data [d (Å), I, (hkl)] are: 2.954, 100, (1̄1̄2, 3̄10); 3.069, 42, (300, 01̄2); 2.486, 24, (310, 21̄2); 3.960, 23, (1̄1̄1, 2̄10); 2.626, 21, (2̄20); 1.820, 20, (1̄04). Electron microprobe analysis gave the following empirical formula calculated on 18 (O + F) (Na2.74Mn0.15)∑2.89Ca2[Y1.21(La0.01Ce0.03Nd0.03Sm0.02Gd0.08Dy0.08Er0.05Yb0.04Lu0.01)∑0.35Mn0.16Zr0.11Na0.09Fe0.072+Ca0.01]∑2(Ti0.76Nb0.23Ta0.01)∑1(Si4.03O14)O1.12F2.88, Z = 1. The crystal structure was refined on a twinnedcrystal to R1 = 2.81% on the basis of 2157 unique reflections (Fo > 4σFo) and is a framework of TS (Titanium Silicate) blocks, which consist of HOH sheets (H – heteropolyhedral, O – octahedral) parallel to (100). In the O sheet, the the [6]MO(1) site is occupied mainly by Ti, <MO(1)–ϕ> = 1.980 Å, and the [6]MO(2) and [6]MO(3) sites are occupied by Na and Na plus minor Mn, <MO(2)–ϕ>= 2.490 Å and <MO(3)–ϕ> = 2.378 Å. In the H sheet, the two [4]Si sites are occupied by Si, with <Si–O> = 1.623 Å; the [6]MH site is occupied by Y and rare-earth elements (Y > REE), with minor Mn, Zr, Na, Fe2+ and Ca, <MH–ϕ> = 2.271 Å and the [6]AP site is occupied by Ca, <AP–ϕ> = 2.416 Å. The MH and AP octahedra and Si2O7 groups constitute the H sheet. The ideal compositions of the O and two H sheets are Na3Ti(OF)F2 and Y2Ca2(Si2O7)2 apfu. Fogoite-(Y) is isostructural with götzenite and hainite. The mineral is named after the type locality, the Fogo volcano in the Azores.


2014 ◽  
Vol 78 (7) ◽  
pp. 1775-1793 ◽  
Author(s):  
Cristian Biagioni ◽  
Paolo Orlandi ◽  
Yves Moëlo ◽  
Luca Bindi

AbstractThe new mineral species carducciite, (AgSb)Pb6(As,Sb)8S20, has been discovered in the baryte-pyrite- (Pb-Ag-Zn) deposit of the Pollone mine, near Valdicastello Carducci, Apuan Alps, Tuscany, Italy. It occurs as black metallic prismatic crystals, up to 0.5 mm long, associated with pyrite and sterryite. Its Vickers hardness (VHN10) is 61 kg/mm2 (range: 52–66), corresponding to a Mohs hardness of ~2½–3. In reflected light, carducciite is dark grey in colour, moderately bireflectant; internal reflections are very weak and deep red in colour. Reflectance percentages for the four COM wavelengths [Rmin, Rmax (%) (λ)] are: 35.8, 40.8 (471.1 nm), 33.7, 39.0 (548.3 nm), 32.7, 37.6 (586.6 nm) and 30.4, 35.1 (652.3 nm). Electron microprobe analysis gives (wt.% – mean of six analyses): Ag 3.55(12), Tl 0.13(3), Pb 41.90(42), Sb 17.79(19), As 12.41(14), S 22.10(17), total 97.9(6). On the basis of ΣMe = 16 a.p.f.u., the chemical formula is Ag0.96Tl0.02Pb5.91As4.84Sb4.27S20.14. The main diffraction lines, corresponding to multiple hkl indices, are (relative visual intensity): 3.689 (s), 3.416 (s), 3.125 (s), 2.989 (s), 2.894 (s), 2.753 (vs), 2.250 (s). The crystal-structure study gives a monoclinic unit cell, space group P21/c, with a 8.4909(3), b 8.0227(3), c 25.3957(9) Å, β 100.382(2)°, V 1701.63(11) Å3, Z = 2. The crystal structure has been solved and refined to a final R1 = 0.063 on the basis of 4137 observed reflections. It can be described within the framework of the sartorite homologous series, as formed by chemically twinned layers of the dufrénoysite type. The simplified idealized structural formula, based on 20 sulfur atoms, can ideally be written as (AgSb)Pb6(As,Sb)Σ=8S20. Carducciite is an (Ag,Sb)-rich homeotype of dufrénoysite, stabilized by the complete coupled substitution 2 Pb2+ = Ag+ + Sb3+ on a specific site of the crystal structure. Together with barikaite, it belongs to the rathite sub-group of P21/c homeotypes of dufrénoysite, of which the crystal chemistry is discussed. The distribution of Ag, coupled with As or Sb on specific sites, appears to be the main criterion for the distinction between the three species of this sub-group.


2013 ◽  
Vol 77 (8) ◽  
pp. 3081-3092 ◽  
Author(s):  
A. R. Kampf ◽  
B. P. Nash ◽  
M. Dini ◽  
A. A. Molina Donoso

AbstractThe new mineral magnesiokoritnigite (IMA 2013-049), ideally Mg(AsO3OH)·H2O, was found at the Torrecillas mine, Salar Grande, Iquique Province, Chile, where it occurs as a secondary alteration phase in association with anhydrite, chudobaite, halite, lavendulan, quartz and scorodite. Crystals of magnesiokoritnigite are colourless to pale-pink, thin to thick laths up to 2 mm long. Laths are elongated on [001], flattened on {010} and exhibit the forms {010}, {110}, {10}, {101}, {031} and {01}. The crystals also occur in dense deep-pink intergrowths. Crystals are transparent with a vitreous lustre. The mineral has a white streak, Mohs hardness of ∼3, brittle tenacity, conchoidal fracture and one perfect cleavage on {101}. The measured and calculated densities are 2.95(3) and 2.935 g cm– 3, respectively. Optically, magnesiokoritnigite is biaxial (+) with α = 1.579(1), β = 1.586(1) and γ = 1.620(1) (measured in white light). The measured 2V is 50(2)° and the calculated 2V is 50°. Dispersion is r < v, medium. The optical orientation is Y ≈ b; Z ^ c = 36° in obtuse β (note pseudomonoclinic symmetry). The mineral is non-pleochroic. The empirical formula, determined from electron-microprobe analyses, is (Mg0.94Cu0.03Mn0.02Ca0.01)Σ 1.00As0.96O5H3.19. Magnesiokoritnigite is triclinic, P, with a = 7.8702(7), b = 15.8081(6), c = 6.6389(14) Å, α = 90.814(6), β = 96.193(6), γ = 90.094(7)°, V = 821.06(19) Å3 and Z = 8. The eight strongest X-ray powder diffraction lines are [dobs Å (I)(hkl)]: 7.96(100)(020), 4.80(54)(101), 3.791(85)(10,210,1,31), 3.242(56)(02,1,012), 3.157(92)(21,30,230), 3.021(61)(11,141,21,221), 2.798(41)(02,032) and 1.908(43)(multiple). The structure, refined to R1 = 5.74% for 2360 Fo > 4σF reflections, shows magnesiokoritnigite to be isostructural with koritnigite and cobaltkoritnigite.


2010 ◽  
Vol 74 (5) ◽  
pp. 863-869 ◽  
Author(s):  
S. J. Mills ◽  
A. R. Kampf ◽  
P. A. Williams ◽  
P. Leverett ◽  
G. Poirier ◽  
...  

AbstractHydroniumpharmacosiderite, ideally (H3O)Fe4(AsO4)3(OH)4·4H2O, is a new mineral from Cornwall, UK, probably from the St. Day group of mines. It occurs as a single yellowish green, slightly elongated cube, measuring 0.17 mm ×0.14 mm ×0.14 mm. The mineral is transparent with a vitreous lustre. It is brittle with a cleavage on {001}, has an irregular fracture, a white streak and a Mohs hardness of 2–3 (determined on H3O-exchanged pharmacosiderite). Hydroniumpharmacosiderite has a calculated density of 2.559 g cm–3 for the empirical formula. The empirical formula, based upon 20.5 oxygen atoms, is: [(H3O)0.50K0.48Na0.06]1.04(Fe3.79Al0.22)4.01[(As2.73P0.15)2.88O12](OH)4·4H2.14O. The five strongest lines in the X-ray powder diffraction pattern are [dobs(Å),Iobs,(hkl)]: 8.050,100,(001); 3.265,35,(112); 2.412,30,(113); 2.830,23,(202); 4.628,22,(111). Hydroniumpharmacosiderite is cubic, space group with a = 7.9587(2) Å, V = 504.11(2) Å3 and Z = 1. The crystal structure was solved by direct methods and refined to R1 = 0.0481 for 520 reflections with I > 2σ(I). The structure is consistent with determinations for H3O-exhchanged pharmacosiderite and the general pharmacosiderite structure type.


2019 ◽  
Vol 83 (5) ◽  
pp. 633-638 ◽  
Author(s):  
Igor V. Pekov ◽  
Inna S. Lykova ◽  
Vasiliy O. Yapaskurt ◽  
Dmitry I. Belakovskiy ◽  
Anna G. Turchkova ◽  
...  

AbstractThe new mineral anatolyite Na6(Ca,Na)(Mg,Fe3+)3Al(AsO4)6 was found in the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. It is associated with potassic feldspar, hematite, tenorite, cassiterite, johillerite, tilasite, ericlaxmanite, lammerite, arsmirandite, sylvite, halite, aphthitalite, langbeinite, anhydrite, wulffite, krasheninnikovite, fluoborite, pseudobrookite and fluorophlogopite. Anatolyite occurs as aggregates (up to 2 mm across) of rhombohedral–prismatic, equant or slightly elongated along [001] crystals up to 0.2 mm. The mineral is transparent, pale brownish–pinkish, with vitreous lustre. It is brittle, cleavage was not observed and the fracture is uneven. The Mohs’ hardness is ca 4½. Dcalc is 3.872 g cm–3. Anatolyite is optically uniaxial (–), ω = 1.703(4) and ε = 1.675(3). Chemical composition (wt.%, electron microprobe) is: Na2O 16.55, K2O 0.43, CaO 2.49, MgO 5.80, MnO 0.16, CuO 0.69, ZnO 0.55, Al2O3 5.01, Fe2O3 7.94, TiO2 0.18, SnO2 0.17, SiO2 0.04, P2O5 0.55, As2O5 60.75, SO3 0.03, total 101.34. The empirical formula based on 24 O apfu is (Na5.90K0.10)Σ6.00(Ca0.50Na0.13Zn0.08Mn0.03)Σ0.74(Mg1.63Fe3+1.12Al0.15Cu0.10)Σ3.00(Al0.96Ti0.03Sn0.01)Σ1.00(As5.97P0.09Si0.01)Σ6.07O24. Anatolyite is trigonal, R$\bar{3}$c, a = 13.6574(10), c = 18.2349(17) Å, V = 2945.6(4) Å3 and Z = 6. The strongest reflections of the powder XRD pattern [d,Å(I)(hkl)] are: 7.21(33)(012), 4.539(16)(113), 4.347(27)(211), 3.421(20)(220), 3.196(31)(214), 2.981(17)(223), 2.827(100)(125) and 2.589(18)(410). The crystal structure was solved from single-crystal XRD data to R = 4.77%. The structure is based on a 3D heteropolyhedral framework formed by M4O18 clusters [M1 = Al and M2 = (Mg,Fe3+)] linked with AsO4 tetrahedra. (Ca,Na) and Na cations centre A1O6 and A2O8 polyhedra in voids of the framework. Anatolyite is isostructural with yurmarinite. The new mineral is named in honour of the outstanding Russian crystallographer, mineralogist and mathematician Anatoly Kapitonovich Boldyrev (1883–1946).


2020 ◽  
Vol 58 (4) ◽  
pp. 533-542
Author(s):  
Anthony R. Kampf ◽  
Robert M. Housley ◽  
George R. Rossman

ABSTRACT Northstarite, Pb6(Te4+O3)5(S2O3), is a new mineral from the North Star mine, Tintic district, Juab County, Utah, USA. It is an oxidation-zone mineral occuring in a vug in massive quartz-baryte-enargite-pyrite in association with anglesite, azurite, chrysocolla, fluorapatite, plumbogummite, tellurite, zincospiroffite, and the new mineral adanite. Crystals are beige short prisms with pyramidal terminations, up to about 1 mm in length. The mineral is transparent to translucent with adamantine luster, white streak, Mohs hardness 2, brittle tenacity, irregular fracture, and no cleavage. The calculated density is 6.888 g/cm3. Northstarite is uniaxial (–) and nonpleochroic. The Raman spectrum is consistent with the presence of tellurite and thiosulfate groups and the absence of OH and H2O. Electron-microprobe analyses gave the empirical formula Pb5.80Sb3+0.05Te4+5.04S6+1.02S2–1.02O18. The mineral is hexagonal, space group P63, with a = 10.2495(5), c = 11.6677(8) Å, V = 1061.50(13) Å3, and Z = 2. The five strongest X-ray powder diffraction lines are [dobs Å(I)(hkl)]: 3.098(100)(113), 2.957(88)(300), 2.140(42)(223), 1.7335(41)(413), and 1.6256(31)(306). The structure (R1 = 0.033 for 1476 I &gt; 2σI reflections) is a framework constructed of short (strong) Pb–O and Te–O bonds with channels along the 63 axes. The thiosulfate groups at the centers of the channels are only weakly bonded to the framework.


Sign in / Sign up

Export Citation Format

Share Document