Genomic stability and functional activity may be lost in telomerase-transduced human CD8+ T lymphocytes

Blood ◽  
2005 ◽  
Vol 106 (8) ◽  
pp. 2663-2670 ◽  
Author(s):  
Marco W. J. Schreurs ◽  
Mario A. J. A. Hermsen ◽  
Ramon I. Klein Geltink ◽  
Kirsten B. J. Scholten ◽  
Antoinette A. T. P. Brink ◽  
...  

AbstractTo obtain the large amount of T cells required for adoptive immunotherapy in a clinical setting, T-cell lifespan extension by human telomerase reverse transcriptase (hTERT) transduction is of particular interest. However, constitutive expression of hTERT is associated with malignant transformation and thus warrants a detailed evaluation of the safety of hTERT-transduced T cells before clinical application. In view of this, we performed an extensive cytogenetic analysis of hTERT-transduced MART-1 (melanoma antigen recognized by T cell 1)–and human papillomavirus type 16 (HPV16) E7–specific human CD8+ cytotoxic T lymphocytes (CTLs), reactive against melanoma and cervical carcinoma, respectively. Our results, obtained by (spectral) karyotyping and array comparative genomic hybridization, showed the development of minor chromosomal aberrations in an hTERT-transduced MART-1–specific CTL clone, whereas severe clonal aberrations were detected in an hTERT-transduced HPV16 E7–specific CTL clone. Furthermore, hTERT transduction did not protect CTLs from immunosenescence, because the HPV16 E7–specific, hTERT-transduced CTL clone showed a decreased functional activity on prolonged culture. Although the general frequency of major chromosomal aberrations in hTERT-transduced CTLs and the in vivo significance of our observations remain still unclear at this point, the currently available data suggest that clinical application of hTERT-transduced CTLs should proceed with caution.

Blood ◽  
2003 ◽  
Vol 102 (3) ◽  
pp. 849-857 ◽  
Author(s):  
Alexander Röth ◽  
Hans Yssel ◽  
Jérôme Pène ◽  
Elizabeth A. Chavez ◽  
Mike Schertzer ◽  
...  

Abstract The loss of telomeric DNA with each cell division contributes to the limited replicative lifespan of human T lymphocytes. Although telomerase is transiently expressed in T lymphocytes upon activation, it is insufficient to confer immortality. We have previously shown that immortalization of human CD8+ T lymphocytes can be achieved by ectopic expression of the human telomerase reverse transcriptase (hTERT) gene, which encodes for the catalytic component of the telomerase complex. To study the role of endogenous hTERT in the lifespan of human T cells, we blocked endogenous hTERT expression by ectopic expression of dominant-negative (DN) hTERT. Cells expressing DN-hTERT had a decreased lifespan and showed cytogenetic abnormalities, including chromosome ends without detectable telomeric DNA as well as chromosome fusions. These results indicate that while endogenous hTERT cannot prevent overall telomere shortening, it has a major influence on the longevity of human T cells. Furthermore, we show that up-regulation of hTERT in T cells upon activation decreases over time in culture. Long-term–cultured T cells also show a decreased expression of c-myc upon activation, resulting in less c-myc–induced transcription of hTERT. Moreover, memory T cells, which have expanded in vivo upon antigen encounter, expressed a lower level of hTERT upon activation than naive cells from the same donor. The observed inverse correlation between telomerase levels and replicative history suggests that telomerase levels in T cells are limiting and increasingly insufficient to sustain their proliferation.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Wei Chen ◽  
Xianying Fang ◽  
Yuan Gao ◽  
Ke Shi ◽  
Lijun Sun ◽  
...  

Abstract Background T lymphocytes play an important role in contact hypersensitivity. This study aims to explore the immunosuppressive activity of SBF-1, an analog of saponin OSW-1, against T lymphocytes in vitro and in vivo. Methods Proliferation of T lymphocytes from lymph nodes of mice was determined by MTT assay. Flow cytometry analysis was performed to assess T cell activation and apoptosis. Levels of cytokines were determined by PCR and ELISA. BALB/c mice were sensitized and challenged with picryl chloride and thickness of left and right ears were measured. Results SBF-1 effectively inhibited T lymphocytes proliferation induced by concanavalin A (Con A) or anti-CD3 plus anti-CD28 at a very low dose (10 nM) but exhibited little toxicity in non-activated T lymphocytes at concentrations up to 10 μM. In addition, SBF-1 inhibited the expression of CD25 and CD69, as well as he phosphorylation of AKT in Con A-activated T cells. SBF-1 also induced apoptosis of activated T cells. In addition, SBF-1 also downregulated the induction of the T cell cytokines, IL-2 and IFN-γ in a dose-dependent manner. Furthermore, SBF-1 significantly suppressed ear swelling and inflammation in a mouse model of picryl chloride-induced contact hypersensitivity. Conclusions Our findings suggest that SBF-1 has an unique immunosuppressive activity both in vitro and in vivo mainly through inhibiting T cell proliferation and activation. Its mechanism appears to be related to the blockage of AKT signaling pathway.


2007 ◽  
Vol 204 (3) ◽  
pp. 489-495 ◽  
Author(s):  
Tim Worbs ◽  
Thorsten R. Mempel ◽  
Jasmin Bölter ◽  
Ulrich H. von Andrian ◽  
Reinhold Förster

In contrast to lymphocyte homing, little is known about molecular cues controlling the motility of lymphocytes within lymphoid organs. Applying intravital two-photon microscopy, we demonstrate that chemokine receptor CCR7 signaling enhances the intranodal motility of CD4+ T cells. Compared to wild-type (WT) cells, the average velocity and mean motility coefficient of adoptively transferred CCR7-deficient CD4+ T lymphocytes in T cell areas of WT recipients were reduced by 33 and 55%, respectively. Both parameters were comparably reduced for WT T lymphocytes migrating in T cell areas of plt/plt mice lacking CCR7 ligands. Importantly, systemic application of the CCR7 ligand CCL21 was sufficient to rescue the motility of WT T lymphocytes inside T cell areas of plt/plt recipients. Comparing the movement behavior of T cells in subcapsular areas that are devoid of detectable amounts of CCR7 ligands even in WT mice, we failed to reveal any differences between WT and plt/plt recipients. Furthermore, in both WT and plt/plt recipients, highly motile T cells rapidly accumulated in the subcapsular region after subcutaneous injection of the CCR7 ligand CCL19. Collectively, these data identify CCR7 and its ligands as important chemokinetic factors stimulating the basal motility of CD4+ T cells inside lymph nodes in vivo.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 119-119
Author(s):  
Rita Simone ◽  
Sonia Marsilio ◽  
Piers E.M. Patten ◽  
Gerardo Ferrer ◽  
Shih-Shih Chen ◽  
...  

Abstract Lenalidomide (Revlimid®), a thalidomide analogue, is an orally administered second generation immunomodulator with anti-angiogenic and anti-neoplastic properties. Initial studies treating patients with chronic lymphocytic leukemia (CLL) suggest that lenalidomide can have considerable efficacy and that its mode of action is mainly indirect, affecting non-malignant cells in the microenvironment, in particular T lymphocytes. Because a recently described xenograft model for CLL has highlighted the importance of CLL-derived, autologous T cells in promoting leukemic B-cell engraftment and growth in vivo, we have studied the influence of lenalidomide on the expansion of CLL B- and T-lymphocytes in this model. After an initial 12 day culture of FACS-isolated CLL-derived T cells with or without anti-CD3/CD28 beads plus IL-2 (30 IU/ml), T lymphocytes were transferred into alymphoid NSG mice via the retro-orbital plexus (day 0). On day 7, CLL cells were delivered retro-orbitally. These recipient animals are referred to as “T + PBMC mice”. Mice that did not receive T cells on day 0 but were given CLL PBMCs at day 7, with or without lenalidomide, served as controls (“PBMC only mice”). Recipient mice received lenalidomide (10mg/kg/day) or vehicle control daily by gavage starting at day 0. All mice were sacrificed at day 28 (28 days after T-cell and 21 days after B-cell transfer), and blood, spleen, and bone marrow were collected. On this material, four analyses were performed: [1] level of human CD45+ cell engraftment; [2] numbers and types of CLL-derived T cells; [3] numbers of CLL B cells; and [4] levels of cytokines reflective of Th1 and Th2 immune responses. There was a clear enhancement in human hematopoietic (CD45+) cell engraftment in those mice exposed to lenalidomide. This was most marked for the PBMC only mice (vehicle: 10.64%; lenalidomide: 38.53%), although it was also evident for T + PBMC mice (vehicle: 55.96%; lenalidomide: 69.65%). T-cell phenotyping was carried out, before and after cell culture and also at sacrifice. Prior to culture, CLL samples contained on average ∼96% CD5+CD19+ cells and ∼3% CD5+CD19- cells; for the latter, ∼67% were CD4+ and ∼33% CD8+. After 12-day culture, these percentages remained largely unchanged. However, the numbers and types of T cells recovered from the spleens at sacrifice were quite different after in vivo exposure to lenalidomide. For the PBMC only, the percentages of CD4+ and CD8+ cells in the spleens differed somewhat based on lenalidomide exposure (CD4: Vehicle 86% vs. Lenalidomide 61%; CD8: Vehicle 10% vs. Lenalidomide 28%). However, this change was dramatic for the T + PBMC mice (CD4: Vehicle 64.1% vs. Lenalidomide 28.9%; CD8: Vehicle 34% vs. Lenalidomide 62%). Furthermore, when the CD8+ cells from these animals were subsetted based on antigen-experience and function, it appeared that lenalidomide exposure had led to the outgrowth of a greater number of effector memory (CD45RO+ CD62L-) than central memory (CD45RO+ CD62L+) T-cells. For CLL-derived B cells, the numbers differed, based not only on lenalidomide exposure but also on prior in vitro activation. Specifically, in PBMC only mice, the addition of lenalidomide led to increased numbers of CLL B cells in the spleen (Vehicle: 7.81% vs. Lenalidomide: 14%). Conversely, in the T + PBMC mice, the numbers of B cells decreased (Vehicle: 2.36% vs. Lenalidomide: 0.34%). An analysis of Th1 and Th2-related cytokines in the plasmas of the mice at sacrifice revealed a fall in IL-4, IL-5, and IL-10 and a marked increase in IFNg, consistent with a Th2 to Th1 transition. The above data suggest that administration of lenalidomide permits greater engraftment of human hematopoietic cells in alymphoid mice. Although this enhancement involves all members of the hematopoietic lineage, T cells, in particular CD8+ effector memory T cells, emerge in excess over time. This CD8 expansion is associated with diminished levels of CLL B cells suggesting that the decrease is due to T-cell mediated cytolysis. In contrast, in the absence of prior T-cell activation, CLL T cells appear to support better CLL B-cell growth. These findings suggest that lenalidomide alters B-cell expansion in vivo depending on the activation and differentiation state of the autologous T-cell compartment. They also implicate the generation of cytolytic T cells as one mechanism whereby lenalidomide leads to clinical improvement in CLL. Disclosures: Allen: Celgene Corporation: Honoraria.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5891-5891
Author(s):  
Jacob Halum Basham ◽  
Terrence L. Geiger

Abstract Chimeric antigen receptor-modified T lymphocytes (CART cells) have shown benefit as an adjuvant immunotherapy in the treatment of B cell malignancies. This success of re-targeted T cells has not been extended to other hematologic malignancies. We have developed an immunotherapeutic approach to treat acute myeloid leukemia (AML) using CAR T cells re-directed against the myeloid-specific antigen CD33 (CART-33). CART-33 cells are potent and specific in eliminating AML cells in vitro and in vivo. Despite this, CART-33 cells have shown poor in vivo expansion and persistence in NOD-SCID IL2rγ (-/-) (NSG) AML xenograft models. To address the reason for this, we assessed the impact of AML-expressed programmed death ligands 1 & 2 (PD-L1/2) on CART-33 cell activity. PD-L1 inhibits T cell functions upon binding PD-1, which is upregulated with T cell activation. Less is known about PD-L2's effect. Interferon-gamma (IFN-γ), a primary effector cytokine secreted by CD4+ and CD8+ effector T cells, is a known potent inducer of PD-L1 on AML blasts. Using AML cell lines U937, Oci-AML3, CMK, and MV4-11 we show that IFN-γ, TNF-α, and activated CART-33 supernatant can induce up-regulation of PD-L1 and PD-L2 on AML. IFN-γ and TNF-α synergize strongly in up-regulating PD-1 ligands on AML. The kinetics and induction of PD-L2 are distinct from that of PD-L1. Although PD-L1 is well documented to suppress T cell function via ligation of T cell expressed PD-1, induction of PD-L1/L2 had no effect on the cytolytic activity of CART-33 cells against AML in short term (<48 h) cultures. Paradoxically, 24 hr pre-treatment of AML with either IFN-γ or CART-33 supernatant increased AML susceptibility to killing by CART-33 cells despite elevated expression of PD-L1/L2 by AML. Our results highlight the regulatory complexity of AML cytolysis by re-targeted T lymphocytes, and argue that tumor-expressed PD-L1 and PD-L2 impacts the sustainability, but not short-term killing activity, of adoptively transferred CAR T cells in the treatment of AML. Disclosures No relevant conflicts of interest to declare.


1980 ◽  
Vol 152 (4) ◽  
pp. 823-841 ◽  
Author(s):  
E Fernandez-Cruz ◽  
B A Woda ◽  
J D Feldman

Established subcutaneous Moloney sarcomas (MST-1) of large size and long duration were eliminated from syngeneic rats by intravenous infusion of varying numbers of specific syngeneic effector T lymphocytes. Spleen cells from BN rats in which tumor had regressed were cultured in an in vitro mixed lymphocyte tumor cell culture (MLTC) to augment cytotoxicity of effector cells. In the MLTC a T cell subset was expanded in response to MST-1 antigens and transformed into blast elements. With these changes, there was an increase in the W3/25 antigen on the T cell surface, a decrease of W3/13 antigen, and an increase in the number of T cells with Ia antigens. The subset associated with elimination of established tumors was a blast T cell W3/25+, W3/13+, as detected by monoclonal antibodies to rat T antigens. The W3/25+ subset was poorly cytotoxic in vitro for MST-1 and apparently functioned in vivo as an amplifier or helper cell in the tumor-bearing host. The W3/25- population was a melange of cells that included (W3/13+, W3/25-) T cells, null cells, Ig+ cells, and macrophages, and was associated with enhancement of tumor in vivo, suggesting the presence of suppressor cells.


1995 ◽  
Vol 182 (6) ◽  
pp. 1727-1737 ◽  
Author(s):  
S I Staprans ◽  
B L Hamilton ◽  
S E Follansbee ◽  
T Elbeik ◽  
P Barbosa ◽  
...  

Little is known about the factors that govern the level of HIV-1 replication in infected individuals. Recent studies (using potent antiviral drugs) of the kinetics of HIV-1 replication in vivo have demonstrated that steady-state levels of viremia are sustained by continuous rounds of de novo infection and the associated rapid turnover of CD4+ T lymphocytes. However, no information is available concerning the biologic variables that determine the size of the pool of T cells that are susceptible to virus infection or the amount of virus produced from infected cells. Furthermore, it is not known whether all CD4+ T lymphocytes are equally susceptible to HIV-1 infection at a given time or whether the infection is focused on cells of a particular state of activation or antigenic specificity. Although HIV-1 replication in culture is known to be greatly facilitated by T cell activation, the ability of specific antigenic stimulation to augment HIV-1 replication in vivo has not been studied. We sought to determine whether vaccination of HIV-1-infected adults leads to activation of virus replication and the targeting of vaccine antigen-responsive T cells for virus infection and destruction. Should T cell activation resulting from exposure to environmental antigens prove to be an important determinant of the steady-state levels of HIV-1 replication in vivo and lead to the preferential loss of specific populations of CD4+ T lymphocytes, it would have significant implications for our understanding of and therapeutic strategies for HIV-1 disease. To begin to address these issues, HIV-1-infected individuals and uninfected controls were studied by measurement of immune responses to influenza antigens and quantitation of virion-associated plasma HIV-1 RNA levels at baseline and at intervals after immunization with the trivalent influenza vaccine. Influenza vaccination resulted in readily demonstrable but transient increases in plasma HIV-1 RNA levels, indicative of activation of viral replication, in HIV-1-infected individuals with preserved ability to immunologically respond to vaccine antigens. Activation of HIV-1 replication by vaccination was more often seen and of greater magnitude in individuals who displayed a T cell proliferative response to vaccine antigens at baseline and in those who mounted a significant serologic response after vaccination. The fold increase in viremia, as well as the rates of increase of HIV-1 in plasma after vaccination and rates of viral decline after peak viremia, were higher in individuals with higher CD4+ T cell counts.(ABSTRACT TRUNCATED AT 400 WORDS)


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3553-3553
Author(s):  
Attilio Bondanza ◽  
Lothar Hambach ◽  
Zohara Aghai ◽  
Monica Casucci ◽  
Bart Nijmeijer ◽  
...  

Abstract Abstract 3553 Poster Board III-490 Introduction Minor histocompatibility antigens (mHag) play a major role in the graft-versus-leukemia (GvL) effect following HLA-matched allogeneic hemopoietic cell transplantation (allo-HCT). Clinically, the GvL effect coincides with the emergence of mHag-specific CD8+ cytotoxic T lymphocytes (CTL). Experimentally, targeting a single mHag with human CD8+ CTL has a major anti-leukemia effect in NOD/scid mice. Altogether, these observations suggest that mHag-specific cytotoxicity by CD8+ T cells is an important component of the GvL effect. In contrast, little is known on the contribution of mHag-specific CD4+ T cells. Female-to-male allo-HCT is characterized by a low rate of leukemia relapse, indicating that H-Y-encoded mHag are potent leukemia-regression antigens. Earlier, we described a DRB3*0301-restricted H-Y mHag epitope inducing CD4+ helper T-cell responses in H-Y-mismatched HLA-matched allo-HCT. Aim: The aim of this study is to elucidate the role of mHag-specific human CD4+ T lymphocytes on the GvL effect. Methods The ALL-CM leukemia cell line, derived from a male (i.e. H-Y+) HLA-A0201+, DRB30301+ patient, reproducibly engrafts in NOD/scid mice after administration of 10×106 cells. Both an HLA-A0201-restricted H-Y-specific CD8+ CTL clone and the DRB30301-restricted H-Y-specific CD4+ helper T-cell clone that we earlier described were used to investigate the anti-leukemia efficacy of CD8+ and CD4+ T cells in NOD/scid mice. Results In vitro, the CD8+ H-Y specific CTL clone was highly cytotoxic against the ALL-CM leukemia. The H-Y specific CD4+ helper T-cell clone did not lyse the leukemia, but produced IFN-γ upon recognition. Infusion of the H-Y-specific CD8+ CTL clone (25×106 cells/mouse) 3 days after ALL-CM leukemia challenge significantly delayed leukemia progression by 3 weeks compared to a CMV-specific CD8+ CTL control clone (p<0,001). Despite no measurable in vitro cytotoxicity, the H-Y-specific CD4+ helper T-cell clone (25×106 cells/mouse) delayed leukemia progression by 2 weeks compared to a leukemia non-reactive HLA-DR1-specific CD4+ helper T-cell control clone (p<0,001). In vitro co-incubation of the H-Y-specific CD4+ helper T-cell clone did not influence leukemia proliferation but induced up-regulation of MHC-class I and II, CD80, CD86 and CD40. In vitro, pre-incubation of leukemia cells with the H-Y-specific CD4+ helper T-cell clone irradiated did not improve the in vivo anti-leukemia efficacy of the H-Y-specific CD8+ CTL clone. Co-infusion of the H-Y specific CD4+ helper T-cell clone did not augment the in vivo persistence of the H-Y-specific CD8+ CTL T-cell clone. Nevertheless, the co-infusion resulted in a delay in leukemia progression of approximately 5 weeks, suggesting an additive, non overlapping anti-leukemia mechanism. Conclusions Minor Hag-specific human CD4+ T lymphocytes may contribute to the GvL effect through a direct, non cytotoxic mechanism, which could be additive to that of CD8+ CTL. The nature of this non cytotoxic GvL effect is currently under investigation. A.B. and L.H. equally contributed to this study. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3771-3771
Author(s):  
Jae H. Park ◽  
Raymond Yeh ◽  
Isabelle Rivière ◽  
Michel Sadelain ◽  
Renier J. Brentjens

Abstract Abstract 3771 Adoptive infusion of T cells genetically modified to express chimeric antigen receptors (CARs) targeted to tumor associated antigens (TAAs) is a promising approach to cancer therapy. However, since TAAs are often expressed by normal tissues, safeguards are needed in the form of additional transduced suicide genes to allow for the efficient in vivo abrogation of infused T cells in case of unanticipated adverse events which may develop in the clinical setting. To this end, we have investigated the in vitro function of 3 different suicide genes each inserted distal to a CAR gene targeted against CD19 (19-28z) and a 2A linker peptide cloned into the SFG gammaretroviral vector. Specifically, we have tested the herpes simplex virus thymidine kinase (HSV-TK SR39) with the prodrug ganciclovir, inducible caspase 9 (iCasp9) with the chemical inducer of dimerization (CID), and the E.coli derived nitroreductase (NTR) with the prodrug metronidazole. Cell growth of PG13 murine fibroblasts transduced to express 19–28z CAR with NTR, HSV-TK, and iCasp9 was inhibited by 80% at 1mM of metronidazole, 85% at 1μM of ganciclovir, and 90% at 10nM of CID, respectively, when compared to control PG-13 fibroblasts. The drug concentrations tested in these assays were at physiologically achievable concentrations in humans, and did not affect the growth rate of control PG13 fibroblasts. Consistent with these findings in PG13 fibroblasts, we found that human T cells transduced with either 1928z.2A.NTR or 1928z.2A.HSV-TK demonstrated 90% and 88% inhibition, respectively, at similar substrate concentrations. Furthermore, we demonstrate that expression of these suicide genes does not affect the phenotype or function of the 19–28z CAR+ T cells, as assessed in vitro by T cell proliferation and cytotoxicity against CD19-expressing tumor cells. Our studies demonstrate highly effective suicide genes for human T lymphocytes transduced with a tumor targeted CAR, and a novel suicide gene/prodrug (NTR/metronidazole) combination with a comparable efficacy that can potentially serve as a reliable safety mechanism for adoptive T cell immunotherapy. While HSV-TK/ganciclovir has been utilized in various clinical settings, the NTR suicide gene has yet to be used in combination with gene modified tumor-targeted T cells. Furthermore, the NTR suicide gene holds several advantages over the HSV-TK and iCasp9 vectors. First, unlike HSV-TK, the NTR suicide gene is effective in both proliferating and non-proliferating cells. Second, unlike CID that is not commercially available, metronidazole is a widely available antibiotic that is relatively non-toxic. Lastly, metronidazole can be used in patients who may already be taking ganciclovir for cytomegalovirus (CMV) prophylaxis or treatment therefore limiting the application of T cells modified to express the HSV-TK suicide gene. Based on this in vitro data, we are currently testing the function of this suicide gene in vivo in two different animal models. Ultimately we anticipate that further studies with this novel suicide gene/prodrug combination will allow us to enhance safety in future clinical trials utilizing gene modified tumor targeted T cells. Disclosures: No relevant conflicts of interest to declare.


1993 ◽  
Vol 178 (4) ◽  
pp. 1231-1246 ◽  
Author(s):  
M Sensi ◽  
S Salvi ◽  
C Castelli ◽  
C Maccalli ◽  
A Mazzocchi ◽  
...  

HLA-A2+ melanomas express common melanoma-associated antigens (Ags) recognized in vitro by autologous cytotoxic T lymphocytes (CTL). However, it is not known whether tumor Ags can drive in vivo a selective accumulation/expansion of Ag-specific, tumor-infiltrating T lymphocytes (TIL). Therefore, to evaluate this possibility, 39 CTL clones isolated from several independent mixed lymphocyte tumor cultures (MLTC) of TIL and peripheral blood lymphocytes (PBL) of an HLA-A2+ melanoma patient and selected for T cell receptor (TCR)-dependent, HLA-restricted tumor lysis, were used for analysis of TCR alpha and beta chain structure by the cDNA polymerase chain reaction (PCR) technique with variable gene-specific primers followed by sequencing. Despite absence of oligoclonality in fresh TIL and PBL, as well as in T cells of day 28 MLTC (day of cloning), sequence analysis of TCR alpha and beta chains of TIL clones revealed a dominance of a major category of melanoma-specific, HLA-A2-restricted T cells expressing a V alpha 8.2/J alpha AP511/C alpha and V beta 2.1/D beta 1/J beta 1.1/C beta 1 TCR. The same TCR was also found in 2 out of 14 PBL clones. The other PBL clones employed a V alpha 2.1 gene segment associated with either V beta 13.2, 14, or w22. Clones A81 (V alpha 2.1/J alpha IGRJ alpha 04/C alpha and V beta 14/D beta 1/J beta 1.2/C beta 1) and A21 (V alpha 8.2/J alpha AP511/C alpha and V beta 2.1/D beta 1/J beta 1.1/C beta 1), representative of the two most frequent TCR of PBL and TIL, respectively, expressed different lytic patterns, but both were HLA-A2 restricted and lysed only HLA-A2+ melanomas and normal melanocytes, thus indicating recognition of two distinct HLA-A2-associated and tissue-related Ags. Finally, by the inverse PCR technique, the specific TCR beta chain (V beta 2.1/D beta 1/J beta 1.1/C beta 1) expressed by the dominant TIL clone was found to represent 19 and 18.4% of all V beta 2 sequences expressed in the fresh tumor sample and in the purified TIL, respectively, but &lt; 0.19% of V beta 2+ sequences expressed in PBL. These results are consistent with the hypothesis that a clonal expansion/accumulation of a melanocyte-lineage-specific and HLA-A2-restricted T cell clone occurred in vivo at the site of tumor growth.


Sign in / Sign up

Export Citation Format

Share Document