Identification of glucocorticoid-response genes in children with acute lymphoblastic leukemia

Blood ◽  
2006 ◽  
Vol 107 (5) ◽  
pp. 2061-2069 ◽  
Author(s):  
Stefan Schmidt ◽  
Johannes Rainer ◽  
Stefan Riml ◽  
Christian Ploner ◽  
Simone Jesacher ◽  
...  

The ability of glucocorticoids (GCs) to kill lymphoid cells led to their inclusion in essentially all chemotherapy protocols for lymphoid malignancies, particularly childhood acute lymphoblastic leukemia (ALL). GCs mediate apoptosis via their cognate receptor and subsequent alterations in gene expression. Previous investigations, including expression profiling studies with subgenome microarrays in model systems, have led to a number of attractive, but conflicting, hypotheses that have never been tested in a clinical setting. Here, we present a comparative whole-genome expression profiling approach using lymphoblasts (purified at 3 time points) from 13 GC-sensitive children undergoing therapy for ALL. For comparisons, expression profiles were generated from an adult patient with ALL, peripheral blood lymphocytes from GC-exposed healthy donors, GC-sensitive and -resistant ALL cell lines, and mouse thymocytes treated with GCs in vivo and in vitro. This generated an essentially complete list of GC-regulated candidate genes in clinical settings and experimental systems, allowing immediate analysis of any gene for its potential significance to GC-induced apoptosis. Our analysis argued against most of the model-based hypotheses and instead identified a small number of novel candidate genes, including PFKFB2, a key regulator of glucose metabolism; ZBTB16, a putative transcription factor; and SNF1LK, a protein kinase implicated in cell-cycle regulation.

Blood ◽  
2004 ◽  
Vol 104 (9) ◽  
pp. 2919-2925 ◽  
Author(s):  
Charlotte V. Cox ◽  
Roger S. Evely ◽  
Anthony Oakhill ◽  
Derwood H. Pamphilon ◽  
Nicholas J. Goulden ◽  
...  

Abstract Only some acute lymphoblastic leukemia (ALL) cells are thought to be capable of proliferating to maintain the leukemic clone, and these cells may be the most relevant to target with treatment regimens. We have developed a serum-free suspension culture (SC) system that supported growth of B-ALL cells from 33 patients for up to 6 weeks. ALL cells from 28 cases (85%) were expanded in this system, and growth was superior in SC than in long-term bone marrow culture. To characterize ALL progenitors, cells were sorted for expression of CD34 and CD10 or CD19 and the subfractions assayed in SC and in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. Cells capable of long-term proliferation in vitro and NOD/SCID repopulation were derived only from the CD34+/CD10- and CD34+/CD19- subfractions, and these cells could engraft secondary recipients. The engrafted cells had the same immunophenotype and karyotype as was seen at diagnosis, suggesting they had differentiated in vivo. These results demonstrate that ALL cells capable of long-term proliferation in vitro and in vivo are CD34+/CD10-/CD19-. This suggests that cells with a more immature phenotype, rather than committed B-lymphoid cells, may be the targets for transformation in B-ALL.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4457-4457
Author(s):  
Aram Prokop ◽  
Corazon Frias ◽  
Guenter Henze ◽  
Swetlana Sadolinnaya ◽  
Valeriy Tatarskiy

Abstract Acute lymphoblastic leukemia (ALL) is the most frequent malignant disease of childhood. Despite a relatively good prognosis (survival 80 %), approximately ¼ of the patients suffer from relapses with a much poorer prognosis (survival 40 %). If a complete remission through chemotherapy is not achieved, the patients will not survive. Thus, the search for new cytostatic substances which can break the resistance against conventional cytostatic drugs is of great interest. We developed a new class of copper-containing cytostatic agents with apoptosis-inducing properties. The present study deals with 20 children, who suffer from de novo ALL or relapsed ALL. In vitro measurement of DNA-fragmentation in primary lymphoblasts of the children showed, that the copper-complexed cytostatic drugs are considerably more effective, compared to conventional analogues and other cytostatic drugs (cytarabine p<0.002, vincristine p< 0.006) used against childhood ALL. Furthermore, the new copper-containing analogues overcome drug resistance against doxorubicin (p<0.001) in vitro. In addition, the prototype of copper-complexed drug analogues, MOC*M, a melphalan-copper-acetoacetonate-complex, has synergistic effects in apoptosis induction combined with melphalan or conventional drugs in therapy of ALL in childhood like vincristin, doxorubicin and cytarabine. Experiments revealed that MOC*M specifically induces apoptosis, as evidenced by DNA fragmentation and dissipation of the mitochondrial membrane potential. MOC*M induces cell death, which was functionally characterized by the use of different cellular model systems being devoid of defined molecular parts of the apoptosis machinery. MOC*M triggers apoptosis in a Bcl-2-independent manner in the multi-resistant melanoma cell line MelHO with a 30-fold over-expression of Bcl-2. In vitro and in vivo experiments on mice with tumors sarcom S-180, melanoma B-16 and adenocarcenom in the large intestine proved a high anti-tumor activity of MOC*M with anti-metastasis and immunizing properties without any side effects in kidney or liver. Thus, MOC*M is able to prolong the life of animals with leucosis L-1210 and P-388. We could show that the accumulation of the tritium-labelled MOC*M compounds took place mainly in the tumor cells in vivo. Moreover, MOC*M is also inhibiting glycolysis in the tumor cells. The result of pre-clinical tests with MOC*M preparations, tested on a limited quota of oncological patients with different tumors, was a very large spectrum of anti-tumor and anti-leukemic activities. Further MOC*M has an immense tolerability in vivo. All in all, copper-containing cytostatic drugs comprise an innovative, highly promising class of cytostatic agents for cancer and leukemia therapy, especially for the therapy of relapsed ALL in childhood.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1913-1913 ◽  
Author(s):  
Ronald W. Stam ◽  
Monique L. Den Boer ◽  
Pauline Schneider ◽  
Jasper de Boer ◽  
Jill Hagelstein ◽  
...  

Abstract MLL rearranged Acute Lymphoblastic Leukemia (ALL) represents an unfavorable and difficult to treat type of leukemia that often is highly resistant to glucocorticoids like prednisone and dexamethasone. As the response to prednisone largely determines the clinical outcome of pediatric ALL patients, overcoming resistance to these drugs may be an important step towards improved prognosis. Here we compared gene expression profiles between prednisone-resistant and prednisone-sensitive pediatric ALL patients to obtain gene expression signatures associated with prednisone resistance for both childhood (&gt;1 year of age) and MLL rearranged infant (&lt;1 year of age) ALL. Merging both signatures in search for overlapping genes associated with prednisone resistance in both patient groups we, found that elevated expression of MCL-1 (an anti-apoptotic member of the BCL-2 protein family) appeared to be characteristic for both prednisone-resistant ALL samples. To validate this observation, we determined MCL-1 expression using quantitative RT-PCR in a cohort of MLL rearranged infant ALL samples (n=23), and confirm that high-level MCL-1 expression significantly confers glucocorticoid resistance both in vitro and in vivo. Finally, down-regulation of MCL-1 in prednisone resistant MLL rearranged ALL cells by RNA interference (RNAi) markedly sensitized these cells to prednisone. Therefore we conclude that MCL-1 plays an important role in glucocorticoid resistance and that MCL- 1 suppressing agents co-administered during glucocorticoid treatment may be beneficial especially for MLL rearranged infant ALL patients.


Blood ◽  
1978 ◽  
Vol 52 (4) ◽  
pp. 712-718 ◽  
Author(s):  
SD Smith ◽  
EM Uyeki ◽  
JT Lowman

Abstract An assay system in vitro for the growth of malignant lymphoblastic colony-forming cells (CFC) was established. Growth of malignant myeloblastic CFC has been previously reported, but this is the first report of growth of malignant lymphoblastic CFC. Established assay systems in vitro have been very helpful in elucidating the control of growth and differentiation of both normal and malignant bone marrow cells. Lymphoblastic CFC were grown from the bone marrow aspirates of 20 children with acute lymphoblastic leukemia. Growth of these colonies was established on an agar assay system and maintained in the relative hypoxia (7% oxygen) of a Stulberg chamber. The criteria for malignancy of these colonies was based upon cellular cytochemical staining characteristics, the presence of specific cell surface markers, and the ability of these lymphoid cells to grow without the addition of a lymphoid mitogen. With this technique, specific nutritional requirements and drug sensitivities can be established in vitro, and these data may permit tailoring of individual antileukemic therapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuiyan Wu ◽  
You Jiang ◽  
Yi Hong ◽  
Xinran Chu ◽  
Zimu Zhang ◽  
...  

Abstract Background T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a high risk of induction failure and poor outcomes, with relapse due to drug resistance. Recent studies show that bromodomains and extra-terminal (BET) protein inhibitors are promising anti-cancer agents. ARV-825, comprising a BET inhibitor conjugated with cereblon ligand, was recently developed to attenuate the growth of multiple tumors in vitro and in vivo. However, the functional and molecular mechanisms of ARV-825 in T-ALL remain unclear. This study aimed to investigate the therapeutic efficacy and potential mechanism of ARV-825 in T-ALL. Methods Expression of the BRD4 were determined in pediatric T-ALL samples and differential gene expression after ARV-825 treatment was explored by RNA-seq and quantitative reverse transcription-polymerase chain reaction. T-ALL cell viability was measured by CCK8 assay after ARV-825 administration. Cell cycle was analyzed by propidium iodide (PI) staining and apoptosis was assessed by Annexin V/PI staining. BRD4, BRD3 and BRD2 proteins were detected by western blot in cells treated with ARV-825. The effect of ARV-825 on T-ALL cells was analyzed in vivo. The functional and molecular pathways involved in ARV-825 treatment of T-ALL were verified by western blot and chromatin immunoprecipitation (ChIP). Results BRD4 expression was higher in pediatric T-ALL samples compared with T-cells from healthy donors. High BRD4 expression indicated a poor outcome. ARV-825 suppressed cell proliferation in vitro by arresting the cell cycle and inducing apoptosis, with elevated poly-ADP ribose polymerase and cleaved caspase 3. BRD4, BRD3, and BRD2 were degraded in line with reduced cereblon expression in T-ALL cells. ARV-825 had a lower IC50 in T-ALL cells compared with JQ1, dBET1 and OTX015. ARV-825 perturbed the H3K27Ac-Myc pathway and reduced c-Myc protein levels in T-ALL cells according to RNA-seq and ChIP. In the T-ALL xenograft model, ARV-825 significantly reduced tumor growth and led to the dysregulation of Ki67 and cleaved caspase 3. Moreover, ARV-825 inhibited cell proliferation by depleting BET and c-Myc proteins in vitro and in vivo. Conclusions BRD4 indicates a poor prognosis in T-ALL. The BRD4 degrader ARV-825 can effectively suppress the proliferation and promote apoptosis of T-ALL cells via BET protein depletion and c-Myc inhibition, thus providing a new strategy for the treatment of T-ALL.


2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Ilaria Iacobucci ◽  
Andrea Ghelli Luserna Di Rorà ◽  
Maria Vittoria Verga Falzacappa ◽  
Claudio Agostinelli ◽  
Enrico Derenzini ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1726
Author(s):  
Valentina Saccomani ◽  
Angela Grassi ◽  
Erich Piovan ◽  
Deborah Bongiovanni ◽  
Ludovica Di Martino ◽  
...  

T-cell acute lymphoblastic leukemia (T-ALL) is a rare, aggressive disease arising from T-cell precursors. NOTCH1 plays an important role both in T-cell development and leukemia progression, and more than 60% of human T-ALLs harbor mutations in components of the NOTCH1 signaling pathway, leading to deregulated cell growth and contributing to cell transformation. Besides multiple NOTCH1 target genes, microRNAs have also been shown to regulate T-ALL initiation and progression. Using an established mouse model of T-ALL induced by NOTCH1 activation, we identified several microRNAs downstream of NOTCH1 activation. In particular, we found that NOTCH1 inhibition can induce miR-22-3p in NOTCH1-dependent tumors and that this regulation is also conserved in human samples. Importantly, miR-22-3p overexpression in T-ALL cells can inhibit colony formation in vitro and leukemia progression in vivo. In addition, miR-22-3p was found to be downregulated in T-ALL specimens, both T-ALL cell lines and primary samples, relative to immature T-cells. Our results suggest that miR-22-3p is a functionally relevant microRNA in T-ALL whose modulation can be exploited for therapeutic purposes to inhibit T-ALL progression.


Blood ◽  
2019 ◽  
Vol 133 (21) ◽  
pp. 2291-2304 ◽  
Author(s):  
Diego Sánchez-Martínez ◽  
Matteo L. Baroni ◽  
Francisco Gutierrez-Agüera ◽  
Heleia Roca-Ho ◽  
Oscar Blanch-Lombarte ◽  
...  

Abstract Relapsed/refractory T-cell acute lymphoblastic leukemia (T-ALL) has a dismal outcome, and no effective targeted immunotherapies for T-ALL exist. The extension of chimeric antigen receptor (CAR) T cells (CARTs) to T-ALL remains challenging because the shared expression of target antigens between CARTs and T-ALL blasts leads to CART fratricide. CD1a is exclusively expressed in cortical T-ALL (coT-ALL), a major subset of T-ALL, and retained at relapse. This article reports that the expression of CD1a is mainly restricted to developing cortical thymocytes, and neither CD34+ progenitors nor T cells express CD1a during ontogeny, confining the risk of on-target/off-tumor toxicity. We thus developed and preclinically validated a CD1a-specific CAR with robust and specific cytotoxicity in vitro and antileukemic activity in vivo in xenograft models of coT-ALL, using both cell lines and coT-ALL patient–derived primary blasts. CD1a-CARTs are fratricide resistant, persist long term in vivo (retaining antileukemic activity in re-challenge experiments), and respond to viral antigens. Our data support the therapeutic and safe use of fratricide-resistant CD1a-CARTs for relapsed/refractory coT-ALL.


Sign in / Sign up

Export Citation Format

Share Document