Cytotoxic CD4+ T cells use granulysin to kill Cryptococcus neoformans, and activation of this pathway is defective in HIV patients

Blood ◽  
2006 ◽  
Vol 109 (5) ◽  
pp. 2049-2057 ◽  
Author(s):  
Chun Fu Zheng ◽  
Ling Ling Ma ◽  
Gareth J. Jones ◽  
M. John Gill ◽  
Alan M. Krensky ◽  
...  

AbstractAn important mechanism of host defense to Cryptococcus neoformans involves the direct microbicidal activity of lymphocytes. The importance of CD4+ T cells is illustrated by the incidence of this infection in the acquired immunodeficiency syndrome (AIDS) patients; however, the relative activity of microbicidal CD4+ T cells compared with CD8+ T cells and natural killer (NK) cells has not been established. Further, although NK cells and CD8+ T cells use perforin or granulysin, respectively, to kill C neoformans, the effector molecule used by CD4+ T cells is not known. Experiments demonstrated that IL-2–activated peripheral blood lymphocytes from healthy adults acquire anticryptococcal activity, and surprisingly, that CD4+ T cells had the most profound effect on this activity. Using SrCl2induced degranulation and siRNA knockdown, granulysin was shown to be the effector molecule. Although activation by anti–CD3 + IL-2 resulted in the additional expression of perforin, this did not improve the anticryptococcal activity. Cryptococcal killing by CD4+ T cells was defective in human immunodeficiency virus (HIV)–infected patients due to dysregulated granulysin and perforin production in response to IL-2 or anti–CD3 + IL-2. In conclusion, CD4+ T cells are the major subset of cells responsible for killing C neoformans in peripheral blood. These cells use granulysin as the effector molecule, and priming is dysregulated in HIV-infected patients, which results in defective microbicidal activity.

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e21203-e21203
Author(s):  
Liangliang Xu ◽  
Jitian Zhang ◽  
Li Yang ◽  
Guangqiang Shao ◽  
Taiyang Liuru ◽  
...  

e21203 Background: Radiotherapy (RT), surgical resection (SR), and immunotherapy (IT) as main therapies in lung cancer have either suppressive or stimulatory effects on the immune system. It’s still unclear the mechanism involved in the systemic changes of immune cells in the blood. Peripheral blood lymphocyte subpopulations were useful markers for evaluating immune response in tumor patients. Hence, we aimed to systematically investigate the alteration of lymphocyte subpopulations during the local therapies to evaluate antitumor treatment effects. Methods: Blood samples were obtained EDTA coated tubes and then centrifuged gently for white blood cell separation. The white blood cells in 10% DMSO and 90% FBS were frozen slowly in -80°C refrigerator. The following fluorochrome-conjugated surface and nuclear antibodies were used in the lymphocyte subtyping: CD11b, CD45, CD19, CD3, CD56, CD4, CD8a, CD25,CD127 and FOXP3. The staining cells were detected in the BD FACS machine and data were analyzed by the paired T-test. The percentage of Lymphocytes, Myeloid cells, B cells, T cells, Treg, CD8+ T cells, CD4+ T cells, NK cells, and NKT were examined. Results: Between July 2019 and January 2020, a total of 176 patients eligible, including 135 RT patients and 29 SR patients,12 IT patients, with both blood collection with both Pre, During and End therapies. Before local therapies, the percentage of total T cells in the RT group was significantly higher than SR (RT v.s SR mean:64.1 v.s 55.3, P = 0.02) while CD8+ T cells (RT v.s SR mean:28.2 v.s 34.5, P = 0.04)and Tregs (RT v.s SR mean:0.0 v.s 0.1, P = 0.055) were lower. The baseline level of T cells and their subtypes showed a significant difference in these two group patients. After local therapies, myeloid cells, lymphocytes, CD4+ T cells, CD8+ T cells, NK cells were significant different. There is no significant difference due to the smaller number of IT patients. In the RT group, lymphocytes (Pre-RT v.s End-RT mean:75.2 v.s 54.3, P = 0.004) and B cells (Pre-RT v.s End-RT mean:12.6 v.s 8.0, P = 0.03) were significantly decreased while other subpopulations didn’t show any significant difference after RT. Interestingly, in the SR group, there was a significant increase in CD4+ T cells (mean:59.0 v.s 62.1, p = 0.02) a trend of reduction in CD8+ T cells (mean:34.5 v.s 32.0, p = 0.055) after SR. In addition, there was an increased trend of Tregs after IT. Conclusions: There are some different patterns of distribution in subtypes of leukocytes in operable and inoperable patients and between different therapies. All RT, SR and IT changed the distribution of peripheral blood lymphocyte subpopulations. Further validation study is warranted to validate our findings particularly in circulating lymphocytes and B cells as a marker to evaluate immune status after RT, CD4+ T cells and CD8+ T cells after SR, Tregs after IT, as well as their relationship with tumor microenvironment and implication for personalized care.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1931-1931
Author(s):  
Patrice Chevallier ◽  
Nelly Robillard ◽  
Marina Illiaquer ◽  
Julie Esbelin ◽  
Mohamad Mohty ◽  
...  

Abstract Abstract 1931 Introduction: Cord Blood (CB) are increasingly used as an alternative stem cells source in adults for allogeneic Stem Cell Transplantation (allo-SCT). The risk of human herpes virus (HHV-6) reactivation is significantly higher after CB transplant vs unrelated peripheral blood stem cells (PBSC) allo-SCT (Chevallier et al, BMT 2010). Higher HHV-6 cell receptor CD46 expression on progenitor cells in CB may explain this difference (Thulke et al, Virol J 2006). Patients and Methods: We have prospectively compared the HHV-6 cell receptor CD46 expression on various cell subsets of three freshly harvested blood sources on one hand and of three graft sources on the other hand. 52 samples were used for the purpose of this study. They were issued from peripheral blood (PB, n=10), G-CSF mobilised PB (GCSF-PB, n=10), cord blood (CB, n=10), unmanipulated bone marrow (uBM, n=5), leukapheresis product (LP, n=10) and thawed CB graft (n=7). CD46 expression was assessed by FACS analysis using a FACS CANTO II (BD Biosciences, San Jose, CA, USA) on total lymphocytes, monocytes, NK cells, T and B cells subsets, plasmacytoid (pDCs) dendritic cells and stem cells. Results: As all cell subsets were found CD46 positive, CD46 mean fluorescence intensity (MFI) was then considered for comparison. When considering the three blood sources, CD46 MFI were found similar on T cells, CD4-/CD8+ and CD4-/CD8- T cells, NKT cells, Tregs, memory B lymphocytes, pDCs and CD34+ stem cells. CD46 MFI was significantly lower on CD4+/CD8- and CD4+/CD8+ T cells, transitional B cells, total and naïve B lymphocytes, and NK cells in CB while higher on monocytes. The highest CD46 MFI was observed on monocytes in CB and on CD4+/CD8+ T cells in GCSF-PB and PB. Also, highest CD46 MFI was detected on T cells compared to B lymphocytes and NK cells in all blood sources while CD46 MFI was higher on CD4+/CD8- T cells compared to CD8+/CD4- T cells. When considering the three graft sources, CD46 MFI was similar on CD4-/CD8- T cells and NKT cells. CD46 MFI was found significantly lower on all other sub-populations in thawed CB graft, except monocytes. The highest CD46 MFI was observed on monocytes in CB graft, on CD4+/CD8+ T cells in LP and on monocytes and on CD4+/CD8- T cells in uBM. Also, highest CD46 MFI was detected on T cells compared to B lymphocytes and NK cells in all graft sources while CD46 MFI was higher on CD4+/CD8- T cells compared to CD8+/CD4- T cells. Conclusion: This original study shows strong differences in term of quantitative CD46 expression between several blood and grafts samples. Our results suggest that other factors (such as another HHV-6 cell surface receptor) than the qualitative CD46 expression play a role in the higher HHV-6 reactivation observed after CB transplant in adults. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2668-2668 ◽  
Author(s):  
Alice Bertaina ◽  
Perla Filippini ◽  
Valentina Bertaina ◽  
Barbarella Lucarelli ◽  
Aurelie Bauquet ◽  
...  

Abstract Background Blinatumomab is a bi-specific monoclonal antibody designed to engage and tether cytotoxic T-cells (CTL) to CD19-expressing target B cells. An ongoing phase I multicenter study in pediatric patients with relapsed/refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL) has shown that blinatumomab induces morphological and molecular remissions, defined as minimal residual disease (MRD) levels <10-4, in 47% of patients [Gore L, et al. J Clin Oncol 31, 2013 (suppl; abstr 10007)]. It is presently unknown whether and to what extent blinatumomab affects T-cell phenotype and function in pediatric patients with BCP-ALL. Patients and Methods Eight children diagnosed with relapsed/refractory BCP-ALL at the Bambino Gesù Children’s Hospital in Rome (median age at diagnosis 5.8 years, range 0.5-14.6) received blinatumomab as continuous intravenous infusion for 28 consecutive days, followed by a 2-week drug-free period. Four out of 8 patients were given repeated treatment courses. Peripheral blood samples were collected before treatment (day 0) and weekly thereafter, for 4 consecutive weeks. Bone marrow (BM) aspirates were available on days 0 and +29 of each drug course. Peripheral blood mononuclear cells (PBMC) were labeled with appropriate combinations of fluorochrome-conjugated monoclonal antibodies to quantitate naïve/memory T cells, αβ/γδ-expressing T cells and other immune effectors with potential anti-leukemia activity, such as CD3+CD56+ natural killer (NK) T cells and CD3-CD56+ NK cells. T-cell production of interferon (IFN)-γ, interleukin (IL)-4 and IL-17 was measured at the single-cell level, after short-term (4-hour) stimulation with phorbol myristate acetate (PMA) and ionomycin. The TCR-Vβ Repertoire Kit® (Beckman Coulter, Milan, Italy) allowed the flow cytometry analysis of 24 different Vβ specificities on T cells, thus covering approximately 70% of the normal human TCR-Vβ repertoire. Results Peripheral blood lymphocytes reached their nadir on day +1 (median 300/µL of blood [inter-quartile range 40-380] compared with 1,080/µL of blood at baseline [inter-quartile range 360-2,310]; p=0.0037 by Mann-Whitney U test for paired data), expanded within 7 days up to 3.5-fold above baseline, and included both CD4+ and CD8+ T cells. By contrast, the frequency of both CD3+CD56+ NK T cells and CD3-CD56+ NK cells remained unchanged compared to baseline. IFN-γ production by patient-derived CD4+ T cells exceeded that observed in CD4+ T cells from healthy controls by 2-fold, indicating robust T helper type 1 (Th1) polarization. The frequency of Th2/Th17 cells, defined as CD4+IL-4+ and CD4+IL-17+ cells, respectively, was not different after treatment compared to baseline. CD31 expression on recovering CD45RA+ naïve T cells, a surrogate phenotypic feature for recent thymic emigrants (RTEs), suggested that thymic output may contribute to T-cell expansion after blinatumomab administration. Non-significant changes in the relative proportion of TCR-αβ and TCR-γδ-expressing CD3+ T cells were detected after treatment (median 79.5% TCR-αβ+ T cells and 19.3% TCR-γδ+ T cells among total CD3+ cells) compared with baseline (median 87.4% TCR-αβ+ T cells and 12.2% TCR-γδ+ T cells among total CD3+ cells). Importantly, both CD3+CD8bright T cells and NK cells expressed lytic granule proteins, such as perforin and granzyme-B, at levels that increased during treatment. The analysis of Vβ TCR repertoire revealed a restricted usage of single Vβ domains by BM-resident CD8+ T cells, but not by CD4+ T cells. Specifically, the sum of Vβ within CD8+ T cells in the BM averaged 56.7±6.2% after blinatumomab, compared with 78±5.1% in healthy controls (p=0.04; Mann-Whitney U test for unpaired data). Conclusions Blinatumomab expands both CD31+CD45RA+ thymic-naïve and memory T cells with heightened IFN-γ production and is highly effective at clearing MRD in children with BCP-ALL. Skewing of the Vβ repertoire within BM-resident CD8+ T cells may be consistent with clonal expansions. Disclosures: Zugmaier: Amgen: Employment.


2018 ◽  
Vol 47 (6) ◽  
pp. 2407-2419 ◽  
Author(s):  
Hong-Min Wang ◽  
Xiao-Hong Zhang ◽  
Ming-Ming Feng ◽  
Yan-Jun Qiao ◽  
Li-Qun Ye ◽  
...  

Background/Aims: Interleukin (IL)-35 has immunosuppressive functions in autoimmune diseases, infectious diseases, and certain cancers. However, few studies have focused on its immunoregulatory activity in non-small cell lung cancer (NSCLC). Thus, we investigated the role of IL-35 in the pathogenesis of this disease. Methods: A total of 66 NSCLC patients and 21 healthy individuals were enrolled. IL-35 expression in peripheral blood and bronchoalveolar lavage fluid (BALF) was measured. The modulatory functions of IL-35 on purified CD4+ and CD8+ T cells from NSCLC patients were investigated in direct and indirect coculture systems with NSCLC cell lines. Results: IL-35 expression was significantly increased in BALF from the tumor site, but not in the peripheral blood of NSCLC patients. IL-35 did not affect the bioactivity including proliferation, cytokine production, cell cycle, and cellular invasion of NSCLC cells. It suppressed responses from type 1 T helper (Th1) and Th17 cells but elevated the regulatory T cell response in cultured CD4+ T cells from NSCLC patients, and reduced cytokine-mediated CD4+ T cells cytotoxicity to NSCLC cells. Moreover, IL-35 also inhibited cytotoxic gene expression in CD8+ T cells from NSCLC, reducing their cytolytic and noncytolytic functions. Conclusion: The results of this study suggest that IL-35 contributes to the dysfunction/exhaustion of T cells and limited antitumor immune responses in NSCLC.


Blood ◽  
1997 ◽  
Vol 89 (12) ◽  
pp. 4652-4658 ◽  
Author(s):  
Thomas V. Tittle ◽  
Andrew D. Weinberg ◽  
Cara N. Steinkeler ◽  
Richard T. Maziarz

Abstract The OX-40 molecule is expressed on the surface of recently activated T lymphocytes. The presence of OX-40 on CD4+ T cells was analyzed in a rat haplo-identical (parental → F1) bone marrow transplant model of acute graft-versus-host disease (aGVHD). Increased numbers of activated CD4+ T cells that expressed the OX-40 antigen were detected in peripheral blood soon after transplantation before the earliest sign of disease. The peak of OX-40 expression occurred 12 days posttransplantation with a range of 18% to 36% of circulating T cells and remained 10-fold above background, never returning to baseline. A slight increase in OX-40 expression (range, 1% to 6%) was also detected on peripheral blood lymphocytes from control syngeneic F1 → F1 recipients. OX-40+ T cells were isolated from spleen, skin, lymph node, and liver tissue of rats undergoing aGVHD, but not in syngeneic transplants. OX-40+ T cells isolated from these tissues were of donor origin and were shown to be allo-reactive. These data raise the possibility of using the OX-40 antibody to detect and deplete selectively the T cells that cause aGVHD.


2008 ◽  
Vol 180 (2) ◽  
pp. 747-753 ◽  
Author(s):  
Darragh Duffy ◽  
Sheila M. Sparshott ◽  
Chun-ping Yang ◽  
Eric B. Bell
Keyword(s):  
T Cells ◽  
Nk Cells ◽  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2575-2575
Author(s):  
Yuji Nakata ◽  
Shenghao Jin ◽  
Yuan Shen ◽  
Alan M. Gewirtz

Abstract The c-myb protooncogene encodes a transcription factor, c-Myb, which is highly expressed in immature hematopoietic cells. c-Myb is required for many critical aspects of blood cell development including lineage fate selection, proliferation, and at multiple time points during early myeloid, and B and T lymphoid cell development. GATA-3, which belongs to a family of zinc finger transcription factors, is also required at several steps in early T cell development, and specifically in regard to this communication, for the development of T helper type 2 (Th2) cells. A recent study by Maurice et al (EMBO2007, 26:3629–3640) reported that c-myb regulates T helper cell lineage commitment in developing mouse thymocytes via regulation of GATA-3 expression. As we were unaware of any studies that have addressed the role of c-Myb and GATA-3 in normal human peripheral blood lymphocytes (PBL), we explored the potential regulatory relationship between these transcription factors in cells of this type. Proceeding from the murine studies, we performed a chromatin immunoprecipitation assay (ChIP) which showed that c-Myb bound the GATA-3 downstream promoter in naïve CD4+ T cells under conditions designed to promote Th2 growth. Such binding was not observed in cells stimulated under Th1 promoting conditions. The interaction of c-Myb and GATA-3 proteins was also detected in cell lysates under Th2 cell promoting conditions by immunoprecipitation with both anti-c-Myb, and anti-GATA-3 polyclonal antibodies. Of note, immunoprecipitation with these same antibodies did not show binding of either protein to STAT6. Additional studies revealed that c-Myb activated a GATA-3 minimal promoter by direct binding to a conserved c-Myb binding site in peripheral blood T cells. Of even greater interest, in 293T cells, GATA-3 activated its own promoter ~6 fold when c-Myb was co-expressed in 293T cells. In the absence of c-Myb, GATA-3 did not significantly activate its own promoter in these cells. We have recently shown that c-Myb binds to MLL via menin. A ChIP assay also showed that MLL and Menin bound to the GATA-3 promoter suggesting that c-Myb and GATA-3 form a co-activator complex on the GATA-3 promoter with MLL. Finally, to explore the role of c-myb expression in human peripheral blood naive CD4+ T cells, we employed c-Myb targeted, and control, short hairpin RNA (shRNA) expressed from a lentivirus vector. This strategy yielded a sequence specific 80–90% knockdown of c-Myb expression in our hands. Stimulation of naive peripheral blood CD4+ T cells expressing the c-Myb directed shRNA with cytokines promoting Th2 cell formation (IL-4, IL-2, and anti-IL-12 antibody) blocked the up-regulation of GATA-3 mRNA expression ~90% compared to cells in which a control shRNA had been expressed. Flow cytometric analysis revealed that intracellular IL-4 expression also was diminished. In contrast, silencing c-myb had no effect on T-bet mRNA expression, or intracellular interferon-expression in the cells induced to undergo Th1 cell formation with IL-12, IL-2 and anti-IL-4 antibody. We conclude from these studies that c-Myb regulates developmental programs specific for Th2, as opposed to Th1, cell development. We hypothesize that such control is exerted in peripheral blood T lymphocytes, at least in part, through direct control of GATA-3, whose expression is auto-regulated with the assistance of c-Myb, and perhaps MLL, acting as transcriptional co-factors.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2346-2346
Author(s):  
Mette Hoegh-Petersen ◽  
Minaa Amin ◽  
Yiping Liu ◽  
Alejandra Ugarte-Torres ◽  
Tyler S Williamson ◽  
...  

Abstract Abstract 2346 Introduction: Polyclonal rabbit-anti-human T cell globulin may decrease the likelihood of graft-vs-host disease (GVHD) without increasing the likelihood of relapse. We have recently shown that high levels of antithymocyte globulin (ATG) capable of binding to total lymphocytes are associated with a low likelihood of acute GVHD grade 2–4 (aGVHD) as well as chronic GVHD needing systemic therapy (cGVHD) but not increased likelihood of relapse (Podgorny PJ et al, BBMT 16:915, 2010). ATG is polyclonal, composed of antibodies for antigens expressed on multiple cell subsets, including T cells, B cells, NK cells, monocytes and dendritic cells. These cell subsets may play a role in the pathogenesis of GVHD. The anti-GVHD effect of ATG may be mediated through killing/inhibition of one or several of these cell subsets (eg, T cells) or their subsets (eg, naïve T cells as based on mouse experiments naïve T cells are thought to play a major role in the pathogenesis of GVHD). To better understand the mechanism of action of ATG on GVHD, we set out to determine levels of which ATG fraction (capable of binding to which cell subset) are associated with subsequent development of GVHD. Patients and Methods: A total of 121 patients were studied, whose myeloablative conditioning included 4.5 mg/kg ATG (Thymoglobulin). Serum was collected on day 7. Using flow cytometry, levels of the following ATG fractions were determined: capable of binding to 1. naïve B cells, 2. memory B cells, 3. naïve CD4 T cells, 4. central memory (CM) CD4 T cells, 5. effector memory (EM) CD4 T cells, 6. naïve CD8 T cells, 7. CM CD8 T cells, 8. EM CD8 T cells not expressing CD45RA (EMRA-), 9. EM CD8 T cells expressing CD45RA (EMRA+), 10. cytolytic (CD16+CD56+) NK cells, 11. regulatory (CD16-CD56high) NK cells, 12. CD16+CD56− NK cells, 13. monocytes and 14. dendritic cells/dendritic cell precursors (DCs). For each ATG fraction, levels in patients with versus without aGVHD or cGVHD were compared using Mann-Whitney-Wilcoxon test. For each fraction for which the levels appeared to be significantly different (p<0.05), we determined whether patients with high fraction level had a significantly lower likelihood of aGVHD or cGVHD than patients with low fraction level (high/low cutoff level was determined from ROC curve, using the point with maximum sum of sensitivity and specificity). This was done using log-binomial regression models, ie, multivariate analysis adjusting for recipient age (continuous), stem cell source (marrow or cord blood versus blood stem cells), donor type (HLA-matched sibling versus other), donor/recipient sex (M/M versus other) and days of follow up (continuous). Results: In univariate analyses, patients developing aGVHD had significantly lower levels of the following ATG fractions: binding to naïve CD4 T cells, EM CD4 T cells, naïve CD8 T cells and regulatory NK cells. Patients developing cGVHD had significantly lower levels of the following ATG fractions: capable of binding to naïve CD4 T cells, CM CD4 T cells, EM CD4 T cells, naïve CD8 T cells and regulatory NK cells. Patients who did vs did not develop relapse had similar levels of all ATG fractions. In multivariate analyses, high levels of the following ATG fractions were significantly associated with a low likelihood of aGVHD: capable of binding to naïve CD4 T cells (relative risk=.33, p=.001), EM CD4 T cells (RR=.30, p<.001), naïve CD8 T cells (RR=.33, p=.002) and regulatory NK cells (RR=.36, p=.001). High levels of the following ATG fractions were significantly associated with a low likelihood of cGVHD: capable of binding to naïve CD4 T cells (RR=.59, p=.028), CM CD4 T cells (RR=.49, p=.009), EM CD4 T cells (RR=.51, p=.006), naïve CD8 T cells (RR=.46, p=.005) and regulatory NK cells (RR=.55, p=.036). Conclusion: For both aGVHD and cGVHD, the anti-GVHD effect with relapse-neutral effect of ATG appears to be mediated by antibodies to antigens expressed on naïve T cells (both CD4 and CD8), EM CD4 T cells and regulatory NK cells, and to a lesser degree or not at all by antibodies binding to antigens expressed on B cells, cytolytic NK cells, monocytes or DCs. This is the first step towards identifying the antibody(ies) within ATG important for the anti-GVHD effect without impacting relapse. If such antibody(ies) is (are) found in the future, it should be explored whether such antibody(ies) alone or ATG enriched for such antibody(ies) could further decrease GVHD without impacting relapse. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Hasi Chaolu ◽  
Xinri Zhang ◽  
Xin Li ◽  
Xin Li ◽  
Dongyan Li

To investigate the immune status of people who previously had COVID-19 infections, we recruited patients 2 weeks post-recovery and analyzed circulating cytokines and lymphocyte subsets. We measured levels of total lymphocytes, CD4+ T cells, CD8+ T cells, CD19+ B cells, CD56+ NK cells, and the serum concentrations of interleukin (IL)-1, IL-4, IL-6, IL-8, IL-10, transforming growth factor beta (TGF-β), tumor necrosis factor alpha (TNF-α), and interferon gamma (IFN-γ) by flow cytometry. We found that in most post-recovery patients, levels of total lymphocytes (66.67%), CD3+ T cells (54.55%), CD4+ T cells (54.55%), CD8 + T cells (81.82%), CD19+ B cells (69.70%), and CD56+ NK cells(51.52%) remained lower than normal, whereas most patients showed normal levels of IL-2 (100%), IL-4 (80.88%), IL-6 (79.41%), IL-10 (98.53%), TNF-α (89.71%), IFN-γ (100%) and IL-17 (97.06%). Compared to healthy controls, 2-week post-recovery patients had significantly lower absolute numbers of total lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, and CD56+ NK cells, along with significantly higher levels of IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ and IL-17. Among post-recovery patients, T cells, particularly CD4+ T cells, were positively correlated with CD19+ B cell counts. Additionally, CD8+ T cells positively correlated with CD4+ T cells and IL-2 levels, and IL-6 positively correlated with TNF-α and IFN-γ. These correlations were not observed in healthy controls. By ROC curve analysis, post-recovery decreases in lymphocyte subsets and increases in cytokines were identified as independent predictors of rehabilitation efficacy. These findings indicate that the immune system has gradually recovered following COVID-19 infection; however, the sustained hyper-inflammatory response for more than 14 days suggests a need to continue medical observation following discharge from the hospital. Longitudinal studies of a larger cohort of recovered patients are needed to fully understand the consequences of the infection.


Sign in / Sign up

Export Citation Format

Share Document