Rho GTPase Rac1 is critical for neutrophil migration into the lung

Blood ◽  
2006 ◽  
Vol 109 (3) ◽  
pp. 1257-1264 ◽  
Author(s):  
Marie-Dominique Filippi ◽  
Kathleen Szczur ◽  
Chad E. Harris ◽  
Pierre-Yves Berclaz

Abstract Neutrophils are critical in the inflammatory process by moving rapidly to tissue sites of inflammation. Members of the small Rho GTPase family, Rac1, Rac2, CDC42, and RhoA, are central regulators of cell migration by cytoskeleton rearrangement. The role of Rac1 in neutrophil migration related to inflammatory processes has remained elusive and has yet to be determined in physiologic in vivo models. We previously demonstrated a role for Rac1 in tail retraction. Here, we present evidence that Rac1-mediated uropod formation may be due to crosstalk with a related Rho GTPase RhoA. To assess the physiologic relevance of these findings, we used adoptive transfer of Rac1flox/flox bone marrow cells which allows postengraftment in vivo deletion of Rac1 only in blood cells. We examined the specific role of Rac1 in neutrophil migration into the lung during the inflammatory process induced by formyl-methionyl-leucyl-phenylalanine exposure. The loss of Rac1 activity in neutrophils is associated with a significant decreased neutrophil recruitment into lung alveolar and attenuation of emphysematous lesions. Overall, this study suggests that Rac1 is a physiologic integrator of signals for neutrophil recruitment into lung tissue during an inflammatory response.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 651-651 ◽  
Author(s):  
Marie-Dominique Filippi ◽  
Haiming Xu ◽  
Jason Towe ◽  
Chad E. Harris ◽  
Kathleen Szczur ◽  
...  

Abstract Neutrophils (PMN) are a critical cell in inflammatory processes. In response to environmental stimuli, they activate various signal transduction pathways allowing them to move rapidly to a site of microbial invasion and to perform phagocytosis, cytokine and oxygen substrate release. Rho GTPase proteins, Rac1, Rac2, CDC42 and Rho, are central regulators of cell movement via actin rearrangement. We have demonstrated the specific role of Rac1 and Rac2 in PMN functions (Gu and Filippi et al, Science 2003; Filippi et al. Nat Immuol., 2004) which raises the question of the specificity of the other Rho GTPases. CDC42 primarily regulates the formation of filopodia. CDC42 controls cell polarity and migration in hematopoietic cell lines. Most of previous studies have utilized dominant active or negative mutants which lack specificity and cannot be easily used to define in vivo cell biology. Here, we used mice genetically deficient in the CDC42 negative regulator CDC42 GTPase Activating Protein (GAP) to study the role of CDC42 in neutrophil functions in vitro and in vivo. Heterozygote (CDC42GAP+/−) or homozygote (CDC42GAP−/−) mutant mice displayed normal neutrophil differentiation in vitro and in vivo. PMN deficient in CDC42GAP displayed 2-fold increased in CDC42 activity. In vivo recruitment of PMN in peritoneal cavities after thioglycollate exposure was significantly impaired in CDC42GAP+/− mice compared with wild type (WT) mice (25.5±0.76 x 105 vs 35.7±0.38 x 105, p<0.05). Both CDC42GAP+/− and CDC42GAP−/− PMN demonstrated defective directed migration in vitro in response to fMLP in a Boyden chamber assay compared with WT (248±31 and 199±20 versus 314±29 migrated cells, p<0.05), suggesting that CDC42 plays a critical role in neutrophil migration in vitro and in vivo. To further understand the role of CDC42GAP in neutrophil migration, single-cell analysis by time-lapse videomicroscopy was performed. Surprisingly, CDC42GAP+/− PMN demonstrated higher migration velocity compared with WT cells in response to fMLP, but this increased speed was associated with an abnormal shape. Upon beta-2 integrin ligation, CDC42GAP+/− PMN demonstrated abnormal elongated trailing tail associated with increased tail filopodia. Importantly, the podosome-like structures identified by a vinculin ring surrounding F-actin at the ventral plasma membrane that are present in the leading edge of WT PMN was absent in the mutant cells. CDC42GAP−/− PMN demonstrated more dramatic F-actin impairment upon integrin ligation compared with CDC42GAP+/− and WT cells and remarkably showed complete loss of cell polarity, consistent with the known role of CDC42 in cell polarity. We hypothesize that the lack of podosome formation in mutant cells could account for the increased speed observed in CDC42GAP+/− cells and therefore result in ineffective directed migration in vivo. Altogether, this suggests that regulation of CDC42 activity plays a pivotal role in neutrophil migration likely via integrin-dependent podosome-like formation. This reinforces the importance of turnover of attachment structures during cell movement and suggests a new role for CDC42 in actin-based attachment structure in neutrophils.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 631-631
Author(s):  
Marie-Dominique Filippi ◽  
Pierre-Yves Berclaz ◽  
Kathleen Szczur ◽  
Chad Harris ◽  
David A. Williams

Abstract Neutrophils are a critical cell in inflammatory processes by moving rapidly to tissue sites of inflammation to perform phagocytosis, cytokine and reactive oxygen species release. Members of the small Rho GTPase family, Rac1, Rac2, CDC42 and RhoA, are central regulators of cell movement via cytoskeleton rearrangement. We have previously demonstrated that the Rho family GTPase Rac2 is a critical regulator of neutrophil functions in vitro and in vivo (Roberts et al, Immunity 1999). We have also demonstrated that in response to formyl-methionyl-leucyl-phenylalanine (fMLP), the related GTPase Rac1 plays a distinct, but as yet ill-defined role in tail retraction during cell movement and cell spreading in vitro (Gu and Filippi et al, Science 2003). Here, we further demonstrate that Rac1 appears to be critical for β2-integrin mediated adhesion and migration likely via cross talk with another Rho GTPase, RhoA. Although, Rac1−/− PMNs show normal in vitro migration in response to fMLP using the Boyden chamber assay, Rac1−/− PMNs demonstrate a dramatic defect compared with WT cells in haptotaxis using transwell precoated with fibrinogen (1.3±0.3x103 vs 9.8±0.5x103). In addition, Rac1−/− PMNs displayed increased frequency in pseudopodia formation associated with lack of cell body contraction upon integrin ligation compared with WT (80% vs 40%). We noted that this phenotype closely mimics deregulation of the related Rho GTPase, RhoA. Remarkably, Rac1-deficiency leads to mislocalization of RhoA in neutrophils after integrin ligation and reintroduction of Rac1 into Rac1−/− cells completely restores the correct localization of RhoA. These data are consistent with the hypothesis that Rho GTPases interact in a time- and space-dependent manner. Because fMLP-induced PMN migration into the lung has previously been shown to be beta2-integrin dependent (Mackarel, Am. J. Respir. Cell. Mol. Biol 2000), we used a model of neutrophil associated lung inflammation induced by intratracheal (IT) injection of fMLP to address the physiological role of Rac1 in neutrophil-derived inflammatory processes in vivo,. To study the role of Rac1 specifically in bone marrow-derived cells, we reconstituted C57BL/6 mice with either wild type or Rac1Flox/Flox bone marrow cells. After Cre-mediated deletion of Rac1, reconstituted mice were treated with one dose of fMLP (20mg) IT. One day after fMLP exposure, bronchoalveolar lavage (BAL) from reconstituted animals showed complete loss of Rac1 expression and demonstrated significantly reduced numbers of migrated neutrophils in BAL compared with mice reconstituted with WT cells (3.1±0.65 vs 9.56±2, p&lt;0.05). Importantly, 5 weeks after fMLP exposure IT, Rac1−/− recipients displayed a significant reduction in emphysematous lesions as compared with WT as assessed by morphometric measurement of alveolar spaces (57.6±7.8 vs 73.3±3.04, p&lt;0.05), demonstrating the physiological relevance of Rac1 in neutrophil-related inflammatory responses in vivo. Taken together, these results suggest that Rac1 activity regulates b2 integrin-induced cell shape change and RhoA subcellular localization in PMNs and demonstrate the existence of physiological cross talk between Rac1 and RhoA where RhoA activity depends at least in part on Rac1. Thus, Rac1 and RhoA appear to coordinately regulate PMN migration into the lung during inflammation.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 376
Author(s):  
Chantal B. Lucini ◽  
Ralf J. Braun

In the last decade, pieces of evidence for TDP-43-mediated mitochondrial dysfunction in neurodegenerative diseases have accumulated. In patient samples, in vitro and in vivo models have shown mitochondrial accumulation of TDP-43, concomitantly with hallmarks of mitochondrial destabilization, such as increased production of reactive oxygen species (ROS), reduced level of oxidative phosphorylation (OXPHOS), and mitochondrial membrane permeabilization. Incidences of TDP-43-dependent cell death, which depends on mitochondrial DNA (mtDNA) content, is increased upon ageing. However, the molecular pathways behind mitochondrion-dependent cell death in TDP-43 proteinopathies remained unclear. In this review, we discuss the role of TDP-43 in mitochondria, as well as in mitochondrion-dependent cell death. This review includes the recent discovery of the TDP-43-dependent activation of the innate immunity cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway. Unravelling cell death mechanisms upon TDP-43 accumulation in mitochondria may open up new opportunities in TDP-43 proteinopathy research.


2010 ◽  
Vol 191 (4) ◽  
pp. 771-781 ◽  
Author(s):  
Alexander Ludwig ◽  
Grant P. Otto ◽  
Kirsi Riento ◽  
Emily Hams ◽  
Padraic G. Fallon ◽  
...  

We studied the function of plasma membrane microdomains defined by the proteins flotillin 1 and flotillin 2 in uropod formation and neutrophil chemotaxis. Flotillins become concentrated in the uropod of neutrophils after exposure to chemoattractants such as N-formyl-Met-Leu-Phe (fMLP). Here, we show that mice lacking flotillin 1 do not have flotillin microdomains, and that recruitment of neutrophils toward fMLP in vivo is reduced in these mice. Ex vivo, migration of neutrophils through a resistive matrix is reduced in the absence of flotillin microdomains, but the machinery required for sensing chemoattractant functions normally. Flotillin microdomains specifically associate with myosin IIa, and spectrins. Both uropod formation and myosin IIa activity are compromised in flotillin 1 knockout neutrophils. We conclude that the association between flotillin microdomains and cortical cytoskeleton has important functions during neutrophil migration, in uropod formation, and in the regulation of myosin IIa.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 22-22
Author(s):  
Chia-Jui Ku ◽  
Steven Grzegorski ◽  
Jordan A. Shavit

Hemostasis is a natural protective process that developed to retain a circulating blood system, conferred by a complicated yet sophisticated balance of factors. Disturbances of this network result in thrombosis or hemorrhage. Among many well-characterized coagulation factors, protein C (PC) exhibits multifunctional roles including anticoagulant, cytoprotective, and anti-inflammatory activities. The importance of PC has been demonstrated not only by the increased risk of venous thrombosis in individuals with heterozygous deficiency, but also the observed neonatal lethality in patients. Knockout mice exhibit similar neonatal lethality, which has made it difficult to further study complete deficiency. The zebrafish is a vertebrate organism that is characterized by a powerful genetic system, prolific breeding, rapid and transparent development, and a well described and highly conserved coagulation cascade. Here we utilize genome editing to generate a null allele of the PC gene (proc) in zebrafish and discover that its loss not only impairs hemostatic balance, but also affects neutrophil recruitment to sites of tissue injury. Through examination of publicly available zebrafish genome sequence, we determined that the proc locus is duplicated in tandem, resulting in two closely adjacent copies with nearly identical sequences. We used CRISPR/Cas9 with two single guide RNAs flanking the entire locus to produce a 17.3 kilobase deletion that knocks out both copies of proc to produce a complete null mutation, verified by sequencing and quantitative PCR. proc-/- mutants survived well into adulthood, with ~50% lethality by seven months of age. The embryonic survival and accessibility enabled us to perform intravital microscopy to evaluate the hemostatic effects of PC deficiency. We used laser-induced endothelial injury on the posterior cardinal vein (PCV) at 3 days post fertilization (dpf), which typically results in rapid formation of an occlusive fibrin-rich thrombus. proc-/- mutants had an average time to occlusion of 60 seconds versus 13 seconds in controls (p &lt; 0.0001), consistent with a consumptive coagulopathy, as previously seen in antithrombin III (at3) mutants. A transgenic background with fluorescently labeled fibrinogen showed that more than 95% of proc-/- mutants had spontaneous thrombi in the PCV, which was not present in controls. To assess the role of PC in inflammation, we used two different injury strategies, non-vascular tail transection and chemical treatment (copper sulfate), on 3 dpf zebrafish larvae. Staining for neutrophil granules revealed homing to the site of injury within 60-75 minutes. In proc-/- mutants we found an average 50% reduction in the number of neutrophils recruited to the site of injury yet counts in the caudal hematopoietic tissue (the site of larval hematopoiesis) were unchanged. Since protein S (PS) is a cofactor for PC anticoagulant function, we hypothesized that the consumptive coagulopathy, but not the neutrophil recruitment, would be PS-dependent. We used genome editing to disrupt the PS gene (pros1) and found that loss of PS also results in a mild consumptive coagulopathy, but spontaneous thrombus formation was less common in the PCV (25%) and was often in the heart instead (80%). Neutrophil recruitment was unaffected in pros1 mutants, and evaluation of double proc/pros1 mutants revealed no synergy in any of the phenotypes. In conclusion, PC and PS deficiency in zebrafish show some similarity to our previously reported model of AT3 deficiency, but the effects are less potent, allowing robust survival that enables in vivo analyses. Our data suggest that the thrombotic phenotypes of PC and PS deficiency are not identical, and display tissue-specific phenotypes. We also found evidence for PS-independent functions of PC in neutrophil migration. We speculate this is due to the role that PC plays in inflammation and signaling but cannot exclude a role in neutrophil extracellular trap (NET) formation. This model of complete proc-/- deficiency in an accessible organism will facilitate further in vivo study of PS-dependent and independent functions of PC, as well as interplay between the two factors. Disclosures Shavit: Bayer: Consultancy; Taked: Consultancy.


1973 ◽  
pp. 20-47
Author(s):  
Carrie E. Whitmire ◽  
Charles F. Demoise ◽  
Richard E. Kouri
Keyword(s):  

Biomedicines ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 186 ◽  
Author(s):  
Bettina Schmid ◽  
Oliver Hausmann ◽  
Wolfgang Hitzl ◽  
Yvonne Achermann ◽  
Karin Wuertz-Kozak

Recently, the role of infection of the intervertebral disc (IVD) with Cutibacterium acnes (C. acnes) as a contributor to disc-related low back pain (LBP) has been discussed. The aim of this study was to investigate whether and how C. acnes contributes to the inflammatory processes during IVD disease. The prevalence of C. acnes infection in human IVD tissue was determined by aerobic and anaerobic culture. Thereafter, primary human IVD cells were infected with a reference and a clinical C. acnes strain and analyzed for pro-inflammatory markers (gene/protein level). In a subsequent experiment, the involvement of the Toll-like receptor (TLR) pathway was investigated by co-treatment with sparstolonin B, a TLR2/4 inhibitor. We detected C. acnes in 10% of IVD biopsies (with either herniation or degeneration). Stimulating IVD cells with both C. acnes strains strongly and significantly upregulated expression of Interleukin (IL)-1β, IL-6, IL-8, and inducible nitric oxide synthase (iNOS). IL-6, cyclooxygenase (COX)-2, and iNOS expression was reduced upon TLR2/4 inhibition in 3 out of 5 donors, whereby responders and non-responders could not be differentiated by their basal TLR2 or TLR4 expression levels. We demonstrate that exposure of IVD cells to C. acnes induces an inflammatory response that may contribute to the development of discogenic LBP by involving TLR2/4 activation, yet only in a subgroup of patients. Whether the same response will be observed in vivo and where lower inoculums are present remains to be proven in future studies.


2019 ◽  
Vol 11 (515) ◽  
pp. eaax2945 ◽  
Author(s):  
Yi-Ling Chen ◽  
Danuta Gutowska-Owsiak ◽  
Clare S. Hardman ◽  
Melanie Westmoreland ◽  
Teena MacKenzie ◽  
...  

Targeted inhibition of cytokine pathways provides opportunities to understand fundamental biology in vivo in humans. The IL-33 pathway has been implicated in the pathogenesis of atopy through genetic and functional associations. We investigated the role of IL-33 inhibition in a first-in-class phase 2a study of etokimab (ANB020), an IgG1 anti–IL-33 monoclonal antibody, in patients with atopic dermatitis (AD). Twelve adult patients with moderate to severe AD received a single systemic administration of etokimab. Rapid and sustained clinical benefit was observed, with 83% achieving Eczema Area and Severity Index 50 (EASI50), and 33% EASI75, with reduction in peripheral eosinophils at day 29 after administration. We noted significant reduction in skin neutrophil infiltration after etokimab compared with placebo upon skin challenge with house dust mite, reactivity to which has been implicated in the pathogenesis of AD. We showed that etokimab also inhibited neutrophil migration to skin interstitial fluid in vitro. Besides direct effects on neutrophil migration, etokimab revealed additional unexpected CXCR1-dependent effects on IL-8–induced neutrophil migration. These human in vivo findings confirm an IL-33 upstream role in modulating skin inflammatory cascades and define the therapeutic potential for IL-33 inhibition in human diseases, including AD.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1633 ◽  
Author(s):  
Sungho Lee ◽  
Patrick J. Karas ◽  
Caroline C. Hadley ◽  
James C. Bayley V ◽  
A. Basit Khan ◽  
...  

Mutations in the neurofibromin 2 (NF2) gene were among the first genetic alterations implicated in meningioma tumorigenesis, based on analysis of neurofibromatosis type 2 (NF2) patients who not only develop vestibular schwannomas but later have a high incidence of meningiomas. The NF2 gene product, merlin, is a tumor suppressor that is thought to link the actin cytoskeleton with plasma membrane proteins and mediate contact-dependent inhibition of proliferation. However, the early recognition of the crucial role of NF2 mutations in the pathogenesis of the majority of meningiomas has not yet translated into useful clinical insights, due to the complexity of merlin’s many interacting partners and signaling pathways. Next-generation sequencing studies and increasingly sophisticated NF2-deletion-based in vitro and in vivo models have helped elucidate the consequences of merlin loss in meningioma pathogenesis. In this review, we seek to summarize recent findings and provide future directions toward potential therapeutics for this tumor.


Sign in / Sign up

Export Citation Format

Share Document