scholarly journals Regulation of LFA-1–dependent inflammatory cell recruitment by Cbl-b and 14-3-3 proteins

Blood ◽  
2008 ◽  
Vol 111 (7) ◽  
pp. 3607-3614 ◽  
Author(s):  
Eun Young Choi ◽  
Valeria V. Orlova ◽  
Susanna C. Fagerholm ◽  
Susanna M. Nurmi ◽  
Li Zhang ◽  
...  

Abstract Inside-out signaling regulation of the β2-integrin leukocyte function–associated antigen-1 (LFA-1) by different cytoplasmic proteins, including 14-3-3 proteins, is essential for adhesion and migration of immune cells. Here, we identify a new pathway for the regulation of LFA-1 activity by Cbl-b, an adapter molecule and ubiquitin ligase that modulates several signaling pathways. Cbl-b−/− mice displayed increased macrophage recruitment in thioglycollate-induced peritonitis, which was attributed to Cbl-b deficiency in macrophages, as assessed by bone marrow chimera experiments. In vitro, Cbl-b−/− bone marrow–derived mononuclear phagocytes (BMDMs) displayed increased adhesion to endothelial cells. Activation of LFA-1 in Cbl-b–deficient cells was responsible for their increased endothelial adhesion in vitro and peritoneal recruitment in vivo, as the phenotype of Cbl-b deficiency was reversed in Cbl-b−/−LFA-1−/− mice. Consistently, LFA-1–mediated adhesion of BMDM to ICAM-1 but not VLA-4–mediated adhesion to VCAM-1 was enhanced by Cbl-b deficiency. Cbl-b deficiency resulted in increased phosphorylation of T758 in the β2-chain of LFA-1 and thereby in enhanced association of 14-3-3β protein with the β2-chain, leading to activation of LFA-1. Consistently, disruption of the 14-3-3/β2-integrin interaction abrogated the enhanced ICAM-1 adhesion of Cbl-b−/− BMDMs. In conclusion, Cbl-b deficiency activates LFA-1 and LFA-1–mediated inflammatory cell recruitment by stimulating the interaction between the LFA-1 β-chain and 14-3-3 proteins.

Blood ◽  
2005 ◽  
Vol 106 (12) ◽  
pp. 3854-3859 ◽  
Author(s):  
Wei Jia ◽  
Hong Li ◽  
You-Wen He

Leukocyte recruitment to inflammation sites depends on interactions between integrins and extracellular matrix (ECM). In this report we show that mice lacking the ECM protein mindin exhibit severely impaired recruitment of neutrophils and macrophages in 4 different inflammation models. Furthermore, neutrophils directly bind to immobilized mindin, and mindin matrix mediates neutrophil migration in vitro. The adhesion of neutrophils to mindin is blocked by anti–integrin α4, anti–integrin αM, and anti–integrin β2 antibodies. We also show that HEK-293 cells transfected with cDNA encoding these integrins exhibit enhanced binding to immobilized mindin matrix and the increased binding can be blocked by anti-integrin antibodies. Our results suggest that mindin serves as a novel ligand for integrins and mindin-integrin interactions are critical for inflammatory cell recruitment in vivo.


2014 ◽  
Vol 306 (12) ◽  
pp. C1184-C1190 ◽  
Author(s):  
Rebecca Lever ◽  
Mark J. Rose ◽  
Edward A. McKenzie ◽  
Clive P. Page

Heparanase (HPSE1) is known to be involved in mechanisms of metastatic tumor cell migration. This enzyme selectively cleaves heparan sulfate proteoglycans (HSPG), which are ubiquitously expressed in mammals and are known to be involved in regulating the activity of an array of inflammatory mediators. In the present study, we have investigated the effects of human recombinant heparanase, the inactive precursor of this enzyme (proheparanase) and enzymatically inactivated heparanase, on inflammatory cell recruitment in the rat and on human leukocyte-endothelial adhesion in vitro. Intraperitoneal injection of heparanase (500 μg) induced a significant inflammatory cell infiltrate in the rat, as assessed by peritoneal lavage 4 h later. Intravital microscopy of the mesenteric microcirculation of anesthetized rats showed an increase in rolling and adherent cells in postcapillary venules that was sensitive to heparin, a nonselective inhibitor of heparanase activity. In vitro, heparanase augmented the adhesion of human neutrophils and mononuclear cells to human umbilical vein endothelial cells in a concentration-dependent manner. Proheparanase had similar effects to the active enzyme both with respect to leukocyte accumulation in the peritoneal cavity and adhesion in vitro. However, heat-inactivated heparanase induced cell adhesion in vitro but was without effect in vivo. Together, these data indicate a role for heparanase in inflammatory cell trafficking in vivo that appears to require enzymatic activity.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3796-3796
Author(s):  
Christelle Gasser ◽  
Rebekka Grundler ◽  
Laurent Brault ◽  
Alec Bullock ◽  
Tobias Dechow ◽  
...  

Abstract Previous work has shown that FLT3-ITD mediated leukemogenesis is associated with increased expression of PIM1 and PIM2 serine/threonine kinases. Here we show that retroviral expression of FLT3-ITD could not compensate impaired clonogenic in vitro growth of PIM1−/− bone marrow cells. Induction of a lethal myelo- and lymphoproliferative disorder by FLT3-ITD in vivo was independent of PIM2, but rather unexpectedly, lethally irradiated recipients could not be reconstituted with FLT3-ITD expressing bone marrow cells lacking PIM1. Transplants of CSFE-labeled PIM1−/− cells revealed an impaired homing capacity to bone marrow and spleen. Expression of lower surface CXCR4 levels (while maintaining normal total CXCR4 levels) in PIM1−/− bone marrow cells was associated with significantly reduced migration towards a CXCL12 gradient and impaired CXCL12-mediated intracellular Ca2+ release. Using siRNA-mediated knockdown, a small molecule PIM inhibitor, expression of a dominant-negative acting PIM1 mutant or re-expression of PIM1 in knockout cells, we observed that PIM1 activity was critical for CXCR4 surface expression. In vitro kinase assays and masspectrometric analysis further revealed that PIM1 directly phosphorylated serine 339 located in the CXCR4 intracellular domain known to be essential for proper receptor recycling. Interestingly, in leukemic blasts from acute myeloid leukemia (AML) patients, we found an association of increased PIM1 expression and high-level of surface CXCR4. In addition, treatment of the cells with a small molecule PIM inhibitor resulted in decreased surface CXCR4 expression in some patients. Our work suggests that PIM1 exerts its oncogenic activity not only by supporting proliferation and survival but also by regulation of cell homing and migration through direct modification of the CXCL12/CXCR4 axis. As CXCR4 is a key mediator of cancer stem cell homing and metastasis, targeting of PIM1 may offer new therapeutic avenues against tumor progression and relapse.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 275-275
Author(s):  
Siobhan Glavey ◽  
Salomon Manier ◽  
Antonio Sacco ◽  
Michaela R Reagan ◽  
Yuji Mishima ◽  
...  

Abstract Background Glycosylation is a stepwise procedure of covalent attachment of oligosaccharide chains to proteins or lipids, and alterations in this process, especially increased sialylation, have been associated with malignant transformation and metastasis. The adhesion and trafficking of multiple myeloma (MM) cells is strongly influenced by glycosylation and multiple myeloma cells express a variety of adhesion molecules, including selectin ligands and integrins, which are typically dependent on glycosylation for their function. We have previously reported that the sialyltransferase ST3GAL6 is up-regulated in plasma cells from MM patients and that increased expression is associated with inferior overall survival (OS) in MM gene expression profiling (GEP) datasets. The functional significance of increased sialylation of MM cells has not previously been reported. Methods MM cell lines MM1s and RPMI-8226 were confirmed to have high expression levels of ST3GAL6 at the gene and protein level compared to healthy controls. Knockdown of ST3GAL6 was confirmed in MM cell lines RPMI-8226 and MM1s using lentiviral shRNAs targeting different regions in the ST3GAL6 mRNA. Specific ST3GAL6 knockdown was confirmed by reduced ST3GAL6 mRNA and protein expression in comparison to a scrambled control. In a calcein-AM fluorescence based adhesion assay we next evaluated the effects of ST3GAL6 knockdown on MM-cell adhesion to bone marrow stromal cells (BMSC’s) and fibronectin coated plates. Migration to 30nM SDF1-α was assessed using transwell plates comparing ST3GAL6 knockdown cells to scrambled controls. The commercially available sialyltransferase inhibitor 3Fax-Neu5Ac was used to pre-treat MM cells in vitro prior to assessment of apoptosis by flow cytometry. shST3GAL6 MM1s cells positive for green fluorescent protein and luciferin (GFP-Luc+) were injected into tail veins of SCID-Bg mice (5x106 cells, n=5/group) and mice were followed weekly using bioluminescent imaging (BLI) for tumor development. Bone marrow homing of tumor cells was assessed using in vivoconfocal imaging of the skull vasculature (n=3/group). Results Knockdown of ST3GAL6 in MM cell lines resulted in a 50% reduction in cell surface staining with the monoclonal antibody HECA-452. This indicated reduced expression of cutaneous lymphocyte associated antigen (CLA), a carbohydrate domain shared by sialyl Lewis X (sLex) and sialyl Lewis a (sLea) antigens, confirming suppression of ST3GAL6 activity. There was a significant reduction in the ability of knockdown cells to adhere to BMSC’s and fibronectin in-vitro compared to scrambled controls (P=0.016, 0.032 respectively). Migration ability of these cells in response to SDF1-α was also reduced (P=0.01). In vivo in a xenograft SCID-Bg mouse model shST3GAL6 cells demonstrated a reduced tumor burden as assessed by weekly BLI (P=0.017 at week 4). A consolidated map of the skull bone marrow niche in mice injected with shST3GAL6 MM1s GFP-Luc+ cells revealed a reduced homing ability of these cells in comparison to mice injected with scrambled control cells. Treatment of the MM cell lines MM1s and RPMI-8226 with a sialyltransferase inhibitor 3Fax-Neu5Ac resulted in almost complete elimination of cell surface sLex and/or sLea expression as determined by HECA-452 staining. Following pre-treatment with 3Fax-Neu5Ac, MM1S cells grown in co-culture with BMSC’s cells showed increased sensitivity to Bortezomib compared to cells treated with bortezomib alone. Conclusions shRNA knockdown of ST3GAL6 in MM cells significantly inhibits adhesion and migration in vitro with reduced homing and proliferation potential in vivo. In conjunction with the results of enzymatic inhibition this indicates that sialylation may play an important role in the malignant behavior of MM cells. Studies are ongoing to address the potential role of altered glycosylation in MM. Disclosures: Ghobrial: Onyx: Advisoryboard Other; BMS: Advisory board, Advisory board Other, Research Funding; Noxxon: Research Funding; Sanofi: Research Funding.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Pierre Cunin ◽  
Rim Bouslama ◽  
Kellie R Machlus ◽  
Marta Martínez-Bonet ◽  
Pui Y Lee ◽  
...  

Bone marrow megakaryocytes engulf neutrophils in a phenomenon termed emperipolesis. We show here that emperipolesis is a dynamic process mediated actively by both lineages, in part through the β2-integrin/ICAM-1/ezrin pathway. Tethered neutrophils enter in membrane-bound vesicles before penetrating into the megakaryocyte cytoplasm. Intracytoplasmic neutrophils develop membrane contiguity with the demarcation membrane system, thereby transferring membrane to the megakaryocyte and to daughter platelets. This phenomenon occurs in otherwise unmanipulated murine marrow in vivo, resulting in circulating platelets that bear membrane from non-megakaryocytic hematopoietic donors. Transit through megakaryocytes can be completed as rapidly as minutes, after which neutrophils egress intact. Emperipolesis is amplified in models of murine inflammation associated with platelet overproduction, contributing to platelet production in vitro and in vivo. These findings identify emperipolesis as a new cell-in-cell interaction that enables neutrophils and potentially other cells passing through the megakaryocyte cytoplasm to modulate the production and membrane content of platelets.


2007 ◽  
Vol 23 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Z. Yu. Tkachuk ◽  
I. Ya. Dubey ◽  
T. G. Yakovenko ◽  
L. I. Semernikova ◽  
S. O. Shapoval ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3683-3683
Author(s):  
Jerome Paggetti ◽  
Guy J. Berchem ◽  
Etienne Moussay

Abstract Chronic lymphocytic leukemia (CLL) is characterized by the accumulation in the blood and the primary lymphoid organs of long-lasting, mature, but non-functional B lymphocytes. Although CLL B cells can survive for long time periods in vivo, cells are undergoing apoptosis relatively quickly in vitro. This spontaneous apoptosis and their sensitivity to drugs is strongly reduced in presence of bone marrow mesenchymal stem cells (MSC) and endothelial cells (EC), which provide anti-apoptotic stimuli to CLL cells via direct contact or secretion of soluble factors. We recently reported the first profiling of circulating miRNA obtained from plasma of CLL patients (Moussay et al., PNAS, 2011). Specific miRNAs were found at higher level in the plasma of CLL patients compared to healthy donors. Exosomes, which are small extracellular vesicles of 50-150 nm originating from endosomes, are now known to efficiently transport nucleic acids and transfer mRNA, microRNA and proteins to target cells. Therefore, exosomes constitute a new component of intercellular communication and their role in CLL remains totally unknown. The specific miRNA signature from plasma of CLL patients combined with our observations that primary CLL B cells can transfer vesicles to MSC through 0.4 µm culture inserts in vitro prompted us to investigate whether CLL B cells secrete exosomes that could modify cells of the bone marrow microenvironment to produce tumor growth promoting factors locally in order to favor their own survival. We isolated, purified and characterized exosomes derived from CLL cell lines, primary cells culture supernatants and plasma from CLL patients. Proteins, mRNA and microRNAs contents were evaluated by high-throughput methods (LC-MS, microarrays) revealing in particular the presence of oncogenic molecules. In vitro, purified CLL-exosomes were found to rapidly enter target cells (already after 1h in MSC and endothelial cells) and to transfer proteins and miRNA. Flow cytometry showed that transferred proteins were expressed at cell surface. Luciferase reporter assay confirmed that miRNAs were efficient in targeting cellular mRNA. Exosomes could also be taken up ex vivo and in vivo by mouse bone marrow cells. Functionally, CLL-exosomes activated key signaling pathways (PI3K, AKT, and MAPK) Immunoblotting indicated the rapid phosphorylation of kinases after 5 min of incubation with CLL-exosomes and the subsequent activation of the canonical NF-kB pathway. We also observed that CLL-exosomes modulated gene expression in target cells among which cytokines (BAFF, IL-6, and IL-8), chemokines (CCL2/MCP-1, CCL5/RANTES, and CXCL1), and other factors involved in cell adhesion and migration (ICAM-1 and MMP-1). These factors were also secreted in the supernatants of MSC and EC as detected by antibody arrays. Exosomes were also shown to increase MSC and EC proliferation, to stimulate actin remodeling, cell migration and to enhance EC angiogenic capabilities (tube formation and aortic ring assays). In conclusion, CLL-exosomes contain pro-oncogenic molecules and strongly affect key functions of MSC and EC which are critical component of the bone marrow microenvironment. Activation of these cells by CLL-exosomes led to release of cytokines/chemokines and oncogenic factors that could promote angiogenesis and also favor leukemic cells survival and migration. Our findings may lead to applications in both diagnosis and therapy development. Molecules identified at the surface or inside CLL-exosomes may be further used as cancer biomarkers. Finally, the description of cell-to-cell communication mechanisms will generate opportunities of innovative therapeutic strategies and confirms the crucial role of exosomes in the development of CLL. Disclosures: No relevant conflicts of interest to declare.


1979 ◽  
Vol 149 (1) ◽  
pp. 17-26 ◽  
Author(s):  
JWM Van Der Meer ◽  
RHJ Beelen ◽  
DM Fluitsma ◽  
R Van Furth

Monoblasts, promonocytes, and macrophages in in vitro cultures of murine bone marrow were studied ultrastructurally, with special attention to peroxidatic activity. Monoblasts show peroxidatic activity in the rough endoplasmic reticulum and nuclear envelope as well as in the granules. The presence of peroxidatic activity in the Golgi apparatus could not be determined. Promonocytes have peroxidase-positive rough endoplasmic reticulum, Golgi apparatus, nuclear envelope, and granules, as previously reported. During culture, cells are formed with peroxidatic activity similar to that of monocytes or exudate macrophages (positive granules; negative Golgi apparatus, RER, and nuclear envelope); we call these cells early macrophages. In addition, transitional macrophages with both positive granules and positive RER, nuclear envelope, negative Golgi apparatus (as in exudate- resident macrophages in vivo), and mature macrophages with peroxidatic activity only in the RER and nuclear envelope (as in resident macrophages in vivo) were found. A considerable number of cells without detectable peroxidatic activity were also encountered. Our finding that macrophages with the peroxidatic pattern of monocytes (early macrophages), exudate-resident macrophages (transitional macrophages), and resident macrophages (mature macrophages), develop in vitro from proliferating precursor cells deriving from the bone marrow, demonstrates once again that resident macrophages in tissues originate from precursor cells in the bone marrow. Therefore, this conclusion can no longer be challenged on the basis of a cytochemical difference between monocytes and exudate macrophages on the one hand and resident macrophages on the other.


1998 ◽  
Vol 188 (9) ◽  
pp. 1621-1632 ◽  
Author(s):  
Roger T. Palframan ◽  
Paul D. Collins ◽  
Nicholas J. Severs ◽  
Stephen Rothery ◽  
Timothy J. Williams ◽  
...  

Mobilization of bone marrow eosinophils is a critical early step in their trafficking to the lung during allergic inflammatory reactions. We have shown previously that the cytokine interleukin (IL)-5, generated during an allergic inflammatory reaction in the guinea pig, acts systemically to mobilize eosinophils from the bone marrow. Here, we have investigated the mechanisms underlying this release process. Examination by light and electron microscopy revealed the rapid migration of eosinophils from the hematopoietic compartment and across the bone marrow sinus endothelium in response to IL-5. Using an in situ perfusion system of the guinea pig hind limb, we showed that IL-5 stimulated a dose-dependent selective release of eosinophils from the bone marrow. Eosinophils released from the bone marrow in response to IL-5 expressed increased levels of β2 integrin and a decrease in L-selectin, but no change in α4 integrin levels. A β2 integrin–blocking antibody markedly inhibited the mobilization of eosinophils from the bone marrow stimulated by IL-5. In contrast, an α4 integrin blocking antibody increased the rate of eosinophil mobilization induced by IL-5. In vitro we demonstrated that IL-5 stimulates the selective chemokinesis of bone marrow eosinophils, a process markedly inhibited by two structurally distinct inhibitors of phosphatidylinositol 3-kinase, wortmannin and LY294002. Wortmannin was also shown to block eosinophil release induced by IL-5 in the perfused bone marrow system. The parallel observations on the bone marrow eosinophil release process and responses in isolated eosinophils in vitro suggest that eosinophil chemokinesis is the driving force for release in vivo and that this release process is regulated by α4 and β2 integrins acting in opposite directions.


2010 ◽  
Vol 107 (6) ◽  
pp. 757-766 ◽  
Author(s):  
Anna Missiou ◽  
Philipp Rudolf ◽  
Peter Stachon ◽  
Dennis Wolf ◽  
Nerea Varo ◽  
...  

Rationale: Tumor necrosis factor receptor–associated factors (TRAFs) are cytoplasmic adaptor proteins for the TNF/interleukin-1/Toll-like receptor superfamily. Ligands of this family comprise multiple important cytokines such as TNFα, CD40L, and interleukin-1β that promote chronic inflammatory diseases such as atherosclerosis. We recently reported overexpression of TRAF5 in murine and human atheromata and that TRAF5 promotes inflammatory functions of cultured endothelial cells and macrophages. Objective: This study tested the hypothesis that TRAF5 modulates atherogenesis in vivo. Methods and Results: Surprisingly, TRAF5 −/− /LDLR −/− mice consuming a high-cholesterol diet for 18 weeks developed significantly larger atherosclerotic lesions than did TRAF5 +/+ /LDLR −/− controls. Plaques of TRAF5-deficient animals contained more lipids and macrophages, whereas smooth muscle cells and collagen remained unchanged. Deficiency of TRAF5 in endothelial cells or in leukocytes enhanced adhesion of inflammatory cells to the endothelium in dynamic adhesion assays in vitro and in murine vessels imaged by intravital microscopy in vivo. TRAF5 deficiency also increased expression of adhesion molecules and chemokines and potentiated macrophage lipid uptake and foam cell formation. These findings coincided with increased activation of JNK and appeared to be independent of TRAF2. Finally, patients with stable or acute coronary heart disease had significantly lower amounts of TRAF5 mRNA in blood compared with healthy controls. Conclusions: Unexpectedly, TRAF5 deficiency accelerates atherogenesis in mice, an effect likely mediated by increased inflammatory cell recruitment to the vessel wall and enhanced foam cell formation.


Sign in / Sign up

Export Citation Format

Share Document