Local and systemic induction of CD4+CD25+ regulatory T-cell population by non-Hodgkin lymphoma

Blood ◽  
2008 ◽  
Vol 111 (11) ◽  
pp. 5359-5370 ◽  
Author(s):  
Sajjan Mittal ◽  
Neil A. Marshall ◽  
Linda Duncan ◽  
Dominic J. Culligan ◽  
Robert N. Barker ◽  
...  

Abstract Regulatory T (Treg) cells contribute to immune evasion by malignancies. To investigate their importance in non-Hodgkin lymphoma (NHL), we enumerated Treg cells in peripheral blood mononuclear cells (PBMCs) and involved tissues from 30 patients. CD25+FoxP3+CD127lowCD4+ Treg cells were increased markedly in PBMCs (median = 20.4% CD4 T cells, n = 20) versus healthy controls (median = 3.2%, n = 13, P < .001) regardless of lymphoma subtype, and correlated with disease stage and serum lactate dehydrogenase (Rs = 0.79, P < .001). T-cell hyporesponsiveness was reversed by depleting CD25+ cells, or by adding anti–CTLA-4, supporting the view that Treg cells explain the systemic immunosuppression seen in NHL. A high proportion of Treg cells was also present in involved tissues (median = 38.8% CD4 T cells, n = 15) versus reactive nodes (median = 11.6%, n = 2, P = .02). When autologous CD25− PBMC fractions were incubated with tumor cells from patients (n = 6) in vitro, there was consistent strong induction and then expansion of cells with the CD4+CD25+FoxP3+ phenotype of classic “natural” Treg cells. This population was confirmed to be suppressive in function. Direct cell-cell interaction of tumor cells with CD25− PBMCs was important in Treg induction, although there was heterogeneity in the mechanisms responsible. We conclude that NHL cells are powerful inducers of Treg cells, which may represent a new therapeutic target.

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 235.1-236
Author(s):  
R. Kumar ◽  
N. Yoosuf ◽  
C. Gerstner ◽  
S. Turcinov ◽  
K. Chemin ◽  
...  

Background:Autoimmunity to citrullinated autoantigens forms a critical component of disease pathogenesis in rheumatoid arthritis (RA). Presence of anti-citrullinated protein antibodies (ACPAs) in patients has high diagnostic value. Recently, several citrullinated antigen specific CD4+T cells have been described. However, detailed studies of their T-cell receptor usage and in-vivo profile suffer from the disadvantage that these cells are present at very low frequencies. In this context, we here present a pipeline for TCR repertoire analysis of antigen-specific CD4+T cells from RA patients, including both citrulline and influenza (control) specificities using in-vitro peptide challenge induced-cell expansion.Objectives:To enable studies of the T cell repertoire of citrullinated antigen-specific CD4+T cells in rheumatoid arthritisMethods:Peripheral blood mononuclear cells (PBMCs) (n=7) and synovial fluid mononuclear cells (SFMCs) (n=5) from HLA-DR*0401-postive RA patients were cultured in the presence of citrullinated Tenascin C peptide cocktails or influenza peptides (positive control). Citrulline reactive cells were further supplemented with recombinant human IL-15 and IL-7 on day 2. All cultures were replenished with fresh medium on day 6 and rIL-2 was added every 2 days from then. Assessment of proportion of peptide-HLA-tetramer positive cells was performed using flow cytometry whereby individual antigen-specific CD4+T cells were sorted into 96-well plates containing cell lysis buffer, followed by PCR-based alpha/beta TCR sequencing. TCR sequencing data was demultiplexed and aligned for TCR gene usage using MiXCR. Some tetramer positive cells were sorted into complete medium containing human IL-2 and PHA for expansion of antigen-specific cells. Cells were supplemented with irradiated allogenic PBMCs (30 times number of antigen specific cells). Clones of antigen specific CD4+T cells were further subjected to tetramer staining to confirm expansion of cells.Results:As evidenced by increase in frequency of tetramer positive CD4+T cells, in vitro peptide stimulation resulted in expansion of both influenza specific (Fig. 1a) and citrullinated antigen specific (Fig. 1b) CD4+T cells. Polyclonal in-vitro expansion of tenascin C tetramer positive sorted cells followed by tetramer staining further confirmed antigen specificity and enrichment for antigen specific CD4+T cells after polyclonal stimulation (Fig.1c). TCR repertoire analysis in PB and SF dataset from the first patient showed clonal expansion of influenza specific cells in both sites. Synovial fluid had more diversity of expanding clones as compared to paired PB, with few expanded clones being shared among SF and PB. We observed a more diverse TCR repertoire in citrulline specific CD4+T cells. We also observed sharing of TCR alpha chains among different citrulline specific CD4+T cell clones.Fig. 1In-vitroexpansion of antigen specific CD4+T cells:Conclusion:This method provides a highly suitable approach for investigating TCR specificities of antigen specific CD4+T cells under conditions of low cell yields. Building on this dataset will allow us to assess specific features of TCR usage of autoreactive T cells in RA.PBMCs were cultured in presence of (a) influenza (HA, MP54) and (b) citrullinated tenascin peptides. The proportion of antigen specific CD4+T cells was assessed using HLA-class II tetramer staining. We observed an increase in frequency of (a) Infleunza specific cells (red dots in upper left and lower right quadrants) and (b) citrullinated tenascin C specific cells (red dots in lower right quadrant), at day 13 post culture as compared to day 3. (c) Sorting of citrullinated tenascin specific CD4+T cells, followed by PHA expansion resulted in visible increase in proportion of citrullinated tenascin specific CD4+T cells.Disclosure of Interests:Ravi kumar: None declared, Niyaz Yoosuf: None declared, Christina Gerstner: None declared, Sara Turcinov: None declared, Karine Chemin: None declared, Vivianne Malmström Grant/research support from: VM has had research grants from Janssen Pharmaceutica


2011 ◽  
Vol 120 (12) ◽  
pp. 515-524 ◽  
Author(s):  
Carol Pridgeon ◽  
Laurence Bugeon ◽  
Louise Donnelly ◽  
Ursula Straschil ◽  
Susan J. Tudhope ◽  
...  

The regulation of human Th17 cell effector function by Treg cells (regulatory T-cells) is poorly understood. In the present study, we report that human Treg (CD4+CD25+) cells inhibit the proliferative response of Th17 cells but not their capacity to secrete IL (interleukin)-17. However, they could inhibit proliferation and cytokine production by Th1 and Th2 cells as determined by IFN-γ (interferon-γ) and IL-5 biosynthesis. Currently, as there is interest in the role of IL-17-producing cells and Treg cells in chronic inflammatory diseases in humans, we investigated the presence of CD4+CD25+ T-cells and IL-17 in inflammation in the human lung. Transcripts for IL-17 were expressed in mononuclear cells and purified T-cells from lung tissue of patients with chronic pulmonary inflammation and, when activated, these cells secrete soluble protein. The T-cell-specific transcription factors RORCv2 (retinoic acid-related orphan receptor Cv2; for Th17) and FOXP3 (forkhead box P3; for Treg cells) were enriched in the T-cell fraction of lung mononuclear cells. Retrospective stratification of the patient cohort into those with COPD (chronic obstructive pulmonary disease) and non-COPD lung disease revealed no difference in the expression of IL-17 and IL-23 receptor between the groups. We observed that CD4+CD25+ T-cells were present in comparable numbers in COPD and non-COPD lung tissue and with no correlation between the presence of CD4+CD25+ T-cells and IL-17-producing cells. These results suggest that IL-17-expressing cells are present in chronically inflamed lung tissue, but there is no evidence to support this is due to the recruitment or expansion of Treg cells.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1945-1945 ◽  
Author(s):  
Wenqun Zhang ◽  
Bo Hu ◽  
Ling Jing ◽  
Jing Yang ◽  
Shan Wang ◽  
...  

Background:Outcomes for pediatric patients with relapsed/refractory B-cell non-Hodgkin lymphoma (NHL) are poor despite use of high-intensity chemotherapy. CAR-T has shown efficacy in treating refractory/relapsed leukemia in pediatric patients and non-Hodgkin lymphoma in adult patients. Objectives:To assess the safety and efficacy of sequential CAR-T in the treatment of refractory/ relapsed B-NHL in pediatric patients. Design/Methods:In our ongoing clinical trial (ChiCTR1800014457), we enrolled and treated 17 pediatric patients with refractory/relapsed B-NHL. Following leukapheresis, T cells were activated with CD3 and CD28 antibodies for 24h, then transduced with lentivirus encoding anti-CD19-CD3zeta-4-1BB CAR and cultured for 5-6 days in serum-free media containing IL2, IL7, IL15, IL21. Meanwhile, all patients briefly received lympho-depleting chemotherapies consisting of fludarabine (30 mg/m2/day) and cyclophosphamide (250 mg/m2/day) on days −5, −4 and −3 according to tumor burden and patient state. On day 0, all patients received a single-dose infusion of CAR-T cells. CAR-T cell dose ranged from 0.5 to 3 million/kg. CAR-T cell numbers and cytokines were measured weekly. Tumor responses were evaluated at day 30 and day 60 post infusion and every two months thereafter. Adverse events were graded according to CTCAEv4 except cytokine release syndrome (CRS) was graded according to Lee et al. Results:Treated patients had relapsed/refractory Burkitt lymphoma (BL) (13/17), diffuse large B cell lymphoma (DLBCL) (2/17), B-lymphoblastic lymphoma (B-LBL) (2/17), and ranged from 4.5-18.0 years old. By St Jude's staging, 9 cases (46.7%) were in stage III, 8 cases (53.3%) were in stage IV. There were 3 cases with CNS involvement (17.6%) and 7 cases with bone marrow involvement (41.2%). They all failed at prior treatment including an average of 8.9 (6-15) courses of chemotherapy. They were then treated with sequential CAR-T cell therapy. A total of 26 courses of CAR-T cell infusion were administered. The overall complete response rate (CRR) was 41.7% (7/17) when first course of CAR-T therapy was conducted, which were all CD19 targeted. Among the 10 patients who did not achieve CR, 2 patients achieved PR with ongoing response, 1 patient died of severe CRS and progression at day 6 and another patient refused to continue the following therapy when tumor progressed at day 99, and he died 1 week later, the other 6 continued to receive second course of CAR-T therapy targeting CD20 or CD22, and 3 of them achieved CR. Thus the overall CRR increased to 58.8% (10/17). The 3 patients, who still did not achieve CR, continued to receive third course of CAR-T therapy targeting CD20 or CD22. Two of them finally achieved CR and the other failed to get CR and is now retreated with chemotherapy and oral Olaparib and Venclexta. Thus, with a median follow-up of 6.2 months (1-18 months), the overall response rate of sequential CAR-T therapy was 94.1% (16/17) and the overall CRR was 70.6% (12/17). Toxicity information through day 30 revealed the occurrence of mild CRS in 8 subjects (47.1%, grade I n=8, grade II n=0), severe CRS in 9 subjects (52.9%, grade III n=8, grade IV n=1). Neurotoxicity was observed in 7 cases (41.2%, seizure in 3 cases, tremor in 4 cases, headache in 1 cases). One case who died rapidly at day 6 of therapy suffered severe CRS (high fever, Capillary leak syndrome, severe pleural effusion, respiratory failure, shock, cardiopulmonary arrest) and neurotoxicity besides disease progression. Other patients with severe CRS and neurotoxicity recovered fully after glucocorticoid use and symptomatic treatment including anti-epilepsy, fluid, dehydrating agent. No case used tocilizumab. Response assessments were performed at day 15, 30, 45, 60. Updated enrollment, toxicity and response assessments will be presented. Conclusion: CD19/CD20/CD22-CAR-T therapy showed promising efficacy for pediatric patients with r/r B-NHL and the toxicities are tolerable with proper symptomatic and supportive treatment. Sequential CAR-T therapy can improve the efficacy compared with a single course of CAR-T infusion. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4187-4187 ◽  
Author(s):  
Zixun Yan ◽  
Wen Wang ◽  
Zhong Zheng ◽  
Ming Hao ◽  
Su Yang ◽  
...  

Abstract Introduction JWCAR029 is a novel CD19-directed 4-1BB stimulated chimeric antigen receptor T (CAR-T) cell type, which is different from JWCAR017 with independent production of CD4 and CD8 T cells and transfusion in non-fixed ratio. We conducted a single arm, open-label, dose escalation Phase I trial of JWCAR029 in relapsed and refractory B-cell non-Hodgkin lymphoma (NCT03355859). Methods From January to July 2018, 10 patients have been enrolled in this trial, including eight diffused large B cell lymphoma (DLBCL) and two MALT lymphoma, with median age of 47 years (range 32 to 59 years). All the patients received immunochemotherapy as induction and more than two lines of salvage treatment. Two patients received bridging chemotherapy after T-cell collection due to rapid tumor progression, followed by re-evaluation before CAR-T cell infusion. Lymphodepletion preconditioning was accomplished by fludarabine 25mg/m2/d and cyclophosphamide 250mg/m2/d on Day-4 to D-2, followed by CAR-T cell infusion on Day0. JWCAR029 was administrated as a single infusion in escalation dose levels, from 2.5×107 CAR-T cells (dose level 1, DL1) to 5.0×107 CAR-T cells (dose level 2, DL2) and to 1.0×108 CAR-T cells (dose level 3, DL3) according to mTPI-2 algorithm. Circulating blood count, serum biochemistry, and coagulation status were follow-up after infusion. Cytokines were assessed on a Luminex platform. Tumor evaluation was performed on Day 29 by PET-CT. PK data were detected by flow cytometry and real-time quantitative polymerase chain reaction system. All the adverse events were recorded. The study was approved by the Shanghai Rui Jin Hospital Review Board with informed consent obtained in accordance with the Declaration of Helsinki. Results The demographic characteristics of the patients were demonstrated in Table 1. Among six evaluable patients (3 of DL1 and 3 of DL2), the ORR was 100% on Day 29, including four complete remission and 2 partial remission. Cytokine release syndrome (CRS) was 100% in Gr 1, with main symptoms as fever (<39.0 degrees), fatigue, and muscle soreness. No neurotoxicity was observed. Four of the six patients with fever >38.0 degrees used prophylactic IL-6 Inhibitor (8mg/kg, ACTEMRA, two patients administered twice). No patients received steroids. The CRS showed no difference between dose level groups (p>0.99). Adverse effects included leukopenia (Gr 3-4: 83.3%, Gr 1-2: 16.7%), hypofibrinogenemia (Gr 1: 16.7%, Gr 2-4: 0%), liver dysfunction (Gr 1: 33.3%, Gr 2-4: 0%), elevated CRP (Gr 1: 83.3%, Gr 2-4: 0%), ferritin (Gr 1-2: 83.3%, Gr 2-4: 0%), or IL-6 (Gr 1-2:100%, Gr 3-4: 0%, Table 2). Conclusion Although long-term follow-up was needed, the preliminary data of six patients in this trial have demonstrated high response rates and safety of JWCAR029 in treating relapsed and refractory B-cell non-Hodgkin lymphoma. Disclosures Hao: JW Therapeutics: Employment, Equity Ownership.


2000 ◽  
Vol 191 (3) ◽  
pp. 551-560 ◽  
Author(s):  
Mark R. Alderson ◽  
Teresa Bement ◽  
Craig H. Day ◽  
Liqing Zhu ◽  
David Molesh ◽  
...  

Development of a subunit vaccine for Mycobacterium tuberculosis (Mtb) is likely to be dependent on the identification of T cell antigens that induce strong proliferation and interferon γ production from healthy purified protein derivative (PPD)+ donors. We have developed a sensitive and rapid technique for screening an Mtb genomic library expressed in Escherichia coli using Mtb-specific CD4+ T cells. Using this technique, we identified a family of highly related Mtb antigens. The gene of one family member encodes a 9.9-kD antigen, termed Mtb9.9A. Recombinant Mtb9.9A protein, expressed and purified from E. coli, elicited strong T cell proliferation and IFN-γ production by peripheral blood mononuclear cells from PPD+ but not PPD− individuals. Southern blot analysis and examination of the Mtb genome sequence revealed a family of highly related genes. A T cell line from a PPD+ donor that failed to react with recombinant Mtb9.9A recognized one of the other family members, Mtb9.9C. Synthetic peptides were used to map the T cell epitope recognized by this line, and revealed a single amino acid substitution in this region when compared with Mtb9.9A. The direct identification of antigens using T cells from immune donors will undoubtedly be critical for the development of vaccines to several intracellular pathogens.


Author(s):  
Derek J Hanson ◽  
Hu Xie ◽  
Danielle M Zerr ◽  
Wendy M Leisenring ◽  
Keith R Jerome ◽  
...  

Abstract We sought to determine whether donor-derived human herpesvirus (HHV) 6B–specific CD4+ T-cell abundance is correlated with HHV-6B detection after allogeneic hematopoietic cell transplantation. We identified 33 patients who received HLA-matched, non–T-cell–depleted, myeloablative allogeneic hematopoietic cell transplantation and underwent weekly plasma polymerase chain reaction testing for HHV-6B for 100 days thereafter. We tested donor peripheral blood mononuclear cells for HHV-6B–specific CD4+ T cells. Patients with HHV-6B detection above the median peak viral load (200 copies/mL) received approximately 10-fold fewer donor-derived total or HHV-6B–specific CD4+ T cells than those with peak HHV-6B detection at ≤200 copies/mL or with no HHV-6B detection. These data suggest the importance of donor-derived immunity for controlling HHV-6B reactivation.


2013 ◽  
Vol 20 (2) ◽  
pp. 156-164 ◽  
Author(s):  
Y Zhang ◽  
M McClellan ◽  
L Efros ◽  
D Shi ◽  
B Bielekova ◽  
...  

Daclizumab is a humanized monoclonal antibody that prevents interleukin-2 (IL-2) binding to CD25, blocking IL-2 signaling by cells that require high-affinity IL-2 receptors to mediate IL-2 signaling. The phase 2a CHOICE study evaluating daclizumab as a treatment for multiple sclerosis (MS) included longitudinal analysis of activated T cell counts. Whereas an exposure-dependent relationship was observed between daclizumab and reductions in HLA-DR+-activated T cells, a similar relationship was not observed for reductions in CD25 levels. The objective of this report is to determine the mechanism by which daclizumab reduces CD25 levels on peripheral blood mononuclear cells (PBMCs) using cytometric techniques. Daclizumab reduced T cell CD25 levels through a mechanism that required the daclizumab-Fc domain interaction with Fc receptors (FcR) on monocytes, but not on natural killer (NK) cells, and was unrelated to internalization or cell killing. Activated CD4+ T cells and FoxP3+ Treg cells showed evidence of trogocytosis of the CD25 antigen in the presence of monocytes. A daclizumab variant that retained affinity for CD25 but lacked FcR binding did not induce trogocytosis and was significantly less potent as an inhibitor of IL-2-induced proliferation of PBMCs. In conclusion, Daclizumab-induced monocyte-mediated trogocytosis of CD25 from T cells appears to be an additional mechanism contributing to daclizumab inhibition of IL-2 signaling.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1482-1482
Author(s):  
Seung-Tae Lee ◽  
Yun Fang Jiang ◽  
Soung-Chul Cha ◽  
Hong Qin ◽  
Larry W. Kwak ◽  
...  

Abstract Advanced stage follicular lymphoma remains an incurable disease with a median survival of 8 to 10 years that has not significantly changed over the last four decades. Therefore, novel treatment options are necessary to improve the clinical outcome in these patients. The observation of spontaneous regressions in a small percentage of patients suggested that augmenting the host immune response could potentially control this malignancy. Strategies using active specific immunotherapy with idiotype vaccines led to induction of clinical and molecular responses in a few patients but have met with only limited success possibly due to the low frequency of antigen-specific T cells induced in the patients. In contrast to active immunization, T cells of a given specificity and function may be selected and expanded in vitro to the desired number for adoptive cell transfer. Towards this goal, we stimulated tumor infiltrating lymphocytes (TILs) or peripheral blood mononuclear cells (PBMCs) from five follicular lymphoma patients with CD40 ligand-activated autologous tumor cells at approximately ten-day intervals in the presence of IL-2 and IL-15. After four rounds of stimulations, T cell lines generated from 3/5 patients recognized autologous unmodified tumor cells by producing significant amounts of TNF-α, GM-CSF and/or IFN-γ. By phenotypic analysis, the T cell lines were predominantly CD4+ T cells (&gt; 70%), and intracellular cytokine assay showed that up to 40% of the CD4+ T cells were tumor-reactive. The inhibition of cytokine production by anti-HLA class II but not class I blocking antibodies confirmed that the CD4+ T cells were tumor-reactive. Further characterization revealed that the T cells from one patient recognized autologous tumor but not autologous normal B cells suggesting that they were tumor-specific. While in a second patient CD4+ T cell clones generated from the T cell line by limiting dilution recognized autologous tumor and autologous normal B cells but not autologous monocytes suggesting that they were B cell lineage-specific. We conclude that follicular lymphoma-specific T cells exist and can be efficiently expanded in vitro from both TILs and PBMCs using CD40 ligand-activated autologous tumor cells for adoptive T cell therapy. Additionally, identification of antigens recognized by these T cells could lead to development of novel immunotherapeutic strategies for lymphomas.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 357-357
Author(s):  
S. Mittal ◽  
N.A. Marshall ◽  
L. Duncan ◽  
D.J. Culligan ◽  
R.N. Barker ◽  
...  

Abstract Regulatory T (Treg) cells contribute to immune evasion by malignancies. To investigate their importance in non-Hodgkin’s lymphoma (NHL), we enumerated Treg cells in peripheral blood mononuclear cells (PBMC) and involved tissues from 30 newly diagnosed patients. CD25+FoxP3+CD127lowCD4+ Treg cells were increased markedly in PBMC (median=20.4% CD4 T cells, n=20) versus healthy controls (median=3.2%, n=13; p<0. 001, rank sum test) and correlated with serum lactate dehydrogenase (n=14; Rs=0.79, p <0.0001) and disease stage. The median Treg percentage of CD4 T cells from early stages (Ann Arbor stage I and II, n=4) was 12.2%, whereas it was 25.4% in advanced disease (Ann Arbor stages III, IV or bulky stage II, ≥5cm, n=10; p =0.013). We also enumerated Tr1 cells, both in peripheral blood and involved tissue samples, and again compared with healthy controls but no significant differences were noted. We documented poor proliferation of T cells with mitogen ConA and almost none with recall antigens PPD and DPT in both PBMC and involved tissue samples (n=9). T cell hyporesponsiveness was reversed by depleting CD25+ cells (n=4), or by adding anti-CTLA-4 (n=3), supporting the view that Treg cells explain the systemic immunosuppression seen in NHL. A high proportion of Treg cells was also present in involved tissues (median=38.8% CD4 T cells, n=15) versus reactive nodes (median=11.6%, n=2, p=0.02). Therefore, we tested the hypothesis that a regulatory phenotype is induced from conventional T cells within the tumor microenvironment. When autologous CD25- PBMC fractions were incubated with tumor cells from patients (n=6) in vitro, there was consistent strong induction and then expansion of cells with the CD4+CD25+FoxP3+ phenotype of classic ‘natural’ Treg cells as indicated by CFSE dilution. This induction was dependent on tumor dose and was seen when we depleted lymphoid dendritic cells from the involved tissue cell suspension using anti-CD304, or enriched the tumor cells by positive selection of CD20+ cells. This population was confirmed to be suppressive in function (n=3). We also investigated the mechanisms of this induction. Both cell-cell contact and soluble factors appeared important. In two of four cases, some induction was also noted with transwell experiments or with tumor cell conditioned supernatant, indicating that in these cases soluble factors are also involved apart from direct cell-cell contact mechanism. Reports elsewhere suggest roles for prostaglandin E2, tryptophan catabolism, IL-9 and PD-1 interaction with its ligands in inducing a Treg phenotype. Thus, we used cyclooxygenase inhibitors aspirin and sulindac, the indoleamine 2, 3-dioxygenase (IDO) inhibitor 1-methyl tryptophan (1MT), anti-IL-9 receptor antibody and blocking anti-PDL-1 or anti-PDL-2 antibodies in four samples. None of these reagents inhibited Treg induction apart from one case where both anti-PDL-1 and anti-PDL-2 blocking antibodies inhibited Treg induction. We conclude that NHL cells are powerful inducers of Treg cells, which may represent a new therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document