scholarly journals Platelet-associated IgAs and impaired GPVI responses in platelets lacking WIP

Blood ◽  
2009 ◽  
Vol 114 (21) ◽  
pp. 4729-4737 ◽  
Author(s):  
Hervé Falet ◽  
Michael P. Marchetti ◽  
Karin M. Hoffmeister ◽  
Michel J. Massaad ◽  
Raif S. Geha ◽  
...  

Abstract The role of the Wiskott-Aldrich syndrome protein (WASp) in platelet function is unclear because platelets that lack WASp function normally. WASp constitutively associates with WASp-interacting protein (WIP) in resting and activated platelets. The role of WIP in platelet function was investigated using mice that lack WIP or WASp. WIP knockout (KO) platelets lack WASp and thus are double deficient. WIP KO mice have a thrombocytopenia, similar to WASp KO mice, resulting in part from enhanced platelet clearance. Most WIP KO, but not WASp KO, mice evolved platelet-associated immunoglobulins (Ig) of the IgA class, which normalize their platelet survival but diminish their glycoprotein VI (GPVI) responses. Protein tyrosine phosphorylation, including that of phospholipase C-γ2, and calcium mobilization are impaired in IgA-presenting WIP KO platelets stimulated through GPVI, resulting in defects in α-granule secretion, integrin αIIbβ3 activation, and actin assembly. The anti-GPVI antibody JAQ1 induces the irreversible loss of GPVI from circulating platelets in wild-type mice, but not in WIP KO mice that bear high levels of platelet-associated IgAs. Together, the data indicate that platelet-associated IgAs negatively modulate GPVI signaling and function in WIP KO mice.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1231-1231
Author(s):  
Hervé Falet ◽  
Michael P. Marchetti ◽  
Delphine Simon ◽  
Raif S. Geha ◽  
John H. Hartwig

Abstract Wiskott-Aldrich Syndrome (WAS) is a hematopoietic disorder characterized by immune deficiency, eczema and severe thrombocytopenia with small platelets. However, the role of the WAS protein (WASp), mutated or absent in WAS, is unclear in platelets because platelets that lack WASp function normally. WASp constitutively associates with WIP in resting and activated platelets. We investigated the role of the platelet WIP-WASp complex by using mice that lack either WIP or WASp. WIP knockout (KO) platelets lack WASp and WIP expression is reduced in WASp KO platelets, indicating a requirement for both proteins for each other’s integrity. WIP KO, but not WASp KO mice evolve platelet-associated antibodies of the IgA class, as evidenced by immunoblot analysis and flow cytometry. We present evidence that platelet-associated IgAs specifically target the collagen receptor GPVI in WIP KO mice: protein tyrosine phosphorylation, including that of phospholipase C-γ2, and calcium mobilization are impaired in IgA-presenting WIP KO platelets stimulated through GPVI, resulting in α-granule secretion, integrin αIIbβ3 activation and actin assembly defects; binding of the anti-GPVI antibody JAQ1 to normally expressed GPVI is reduced in IgA-presenting WIP KO platelets; JAQ1 induces the irreversible loss of GPVI from circulating platelets in WT mice, but not in WIP KO mice that bear anti-platelet IgAs. Together, the data indicate that platelet-associated IgAs negatively modulate GPVI signaling in WIP KO mice.


2007 ◽  
Vol 98 (10) ◽  
pp. 806-812 ◽  
Author(s):  
Vandana Dole ◽  
Wolfgang Bergmeier ◽  
Ian Patten ◽  
Junichi Hirahashi ◽  
Tanya Mayadas ◽  
...  

SummaryWe have previously shown that activated platelets in circulation stimulate release of endothelial Weibel-Palade bodies thus increasing leukocyte rolling in venules. P-selectin on the activated platelets mediates adhesion to leukocytes via PSGL-1 and is rapidly shed into plasma. We were interested in studying the role of PSGL-1 in regulating expression and function of platelet P-selectin. We show here that PSGL-1 is critical for the activation of endothelial cells in venules of mice infused with activated platelets. The interaction of platelet P-selectin with PSGL-1 is also required for P-selectin shedding, as P-selectin was retained significantly longer on the surface of activated platelets infused into PSGL-1-/- compared to wild-type mice. The leukocyte integrin αMβ2 (Mac-1) was not required for P-selectin shedding. In addition to shedding, P-selectin can be downregulated from the platelet surface through internalization and this is the predominant mechanism in the absence of PSGL-1. We demonstrate that leukocyte- neutrophil elastase,known to cleave P-selectin in vitro, is not the major sheddase for P-selectin in vivo. In conclusion, interaction of platelet P-selectin with PSGL-1 is crucial for activation of the endothelium andWeibel-Palade body secretion. The interaction with PSGL-1 also results in rapid shedding of P-selectin thus downregulating the inflammatory potential of the platelet.


Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4246-4253 ◽  
Author(s):  
Lynn S. Quek ◽  
Jean-Max Pasquet ◽  
Ingeborg Hers ◽  
Richard Cornall ◽  
Graham Knight ◽  
...  

Abstract Activation of platelets by collagen is mediated by the complex glycoprotein VI (GPVI)/Fc receptor γ (FcRγ chain). In the current study, the role of 2 Src family kinases, Fyn and Lyn, in GPVI signaling has been examined using murine platelets deficient in one or both kinases. In the fyn−/−platelets, tyrosine phosphorylation of FcRγ chain, phopholipase C (PLC) activity, aggregation, and secretion are reduced, though the time of onset of response is unchanged. In the lyn−/−platelets, there is a delay of up to 30 seconds in the onset of tyrosine phosphorylation and functional responses, followed by recovery of phosphorylation and potentiation of aggregation and α-granule secretion. Tyrosine phosphorylation and aggregation in response to stimulation by collagen-related peptide is further attenuated and delayed in fyn−/−lyn−/−double-mutant platelets, and potentiation is not seen. This study provides the first genetic evidence that Fyn and Lyn mediate FcR immune receptor tyrosine-based activation motif phosphorylation and PLCγ2 activation after the ligation of GPVI. Lyn plays an additional role in inhibiting platelet activation through an uncharacterized inhibitory pathway.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3576-3576
Author(s):  
Patricia G. Quinter ◽  
Todd M. Quinton ◽  
Carol A. Dangelmaier ◽  
Satya P. Kunapuli ◽  
James L. Daniel

Abstract The collagen receptor glycoprotein VI (GPVI), plays an essential role in platelet activation and the regulation of hemostasis. Microdomains within the plasma membrane, called lipid rafts, have been implicated in GPVI signaling. The GPVI receptor has been shown to associate with the lipid rafts in both resting and activated platelets. It has been reported that there is a reduction in GPVI signaling in raft-disrupted platelets following activation with various GPVI agonists, especially at low to moderate agonist concentrations. Since platelet aggregation is potentiated by secreted adenosine 5′-diphosphate (ADP) at low concentrations of convulxin and at all concentrations of collagen and collagen-related peptide (CRP), we wanted to determine whether the decrease in GPVI signaling found in platelets with disrupted rafts was due to the loss of agonist potentiation by ADP. We compared platelet aggregation, protein phosphorylation, and calcium mobilization in platelets with intact and disrupted lipid rafts following activation with the GPVI agonists, collagen, convulxin and CRP. We show that lipid raft disruption inhibits aggregation induced by collagen and convulxin, but this inhibition is no longer apparent in the presence of ADP feedback inhibitors. Furthermore, raft-disrupted platelets had the same level of phosphorylation of proteins involved in GPVI signaling (i.e. Syk, LAT, and PLCγ2) and the same ability to mobilize calcium following activation with collagen or convulxin. Therefore, the effects of lipid raft disruption on aggregation can be attributed to the loss of ADP feedback. Interestingly, however, raft disruption directly inhibited aggregation and Syk phosphorylation induced by CRP in the presence and absence of ADP feedback. We propose that these differences are due to the fact that CRP is a relatively small, synthesized peptide of 37 amino acids, while collagen and convulxin are large ligands. These agonists are all able to bind the GPVI receptor, but they may not have the same ability to simultaneously cluster multiple receptors due to their size differential. The lipid rafts may be important for CRP stimulation, but not for collagen or convulxin, because they may have a higher density of the GPVI receptor than nonraft membrane regions, allowing CRP to cluster multiple receptors and activate the GPVI signaling cascade. When we disrupt the lipid rafts, we are reducing the effective concentration of GPVI available for activation by CRP but not by collagen or convulxin.


2012 ◽  
Vol 80 (12) ◽  
pp. 4071-4077 ◽  
Author(s):  
John J. Garber ◽  
Fuminao Takeshima ◽  
Inés M. Antón ◽  
Michiko K. Oyoshi ◽  
Anna Lyubimova ◽  
...  

ABSTRACTThe human pathogens enteropathogenicEscherichia coli(EPEC) and vaccinia virus trigger actin assembly in host cells by activating the host adaptor Nck and the actin nucleation promoter neural Wiskott-Aldrich syndrome protein (N-WASP). EPEC translocates effector molecules into host cells via type III secretion, and the interaction between the translocated intimin receptor (Tir) and the bacterial membrane protein intimin stimulates Nck and N-WASP recruitment, leading to the formation of actin pedestals beneath adherent bacteria. Vaccinia virus also recruits Nck and N-WASP to generate actin tails that promote cell-to-cell spread of the virus. In addition to Nck and N-WASP, WASP-interacting protein (WIP) localizes to vaccinia virus tails, and inhibition of actin tail formation upon ectopic expression of WIP mutants led to the suggestion that WIP is required for this process. Similar studies of WIP mutants, however, did not affect the ability of EPEC to form actin pedestals, arguing against an essential role for WIP in EPEC-induced actin assembly. In this study, we demonstrate that Nck and N-WASP are normally recruited by vaccinia virus and EPEC in the absence of WIP, and neither WIP nor the WIP family members CR16 and WIRE/WICH are essential for pathogen induced actin assembly. In addition, although Nck binds EPEC Tir directly, N-WASP is required for its localization during pedestal formation. Overall, these data highlight similar pathogenic strategies shared by EPEC and vaccinia virus by demonstrating a requirement for both Nck and N-WASP, but not WIP or WIP family members in pathogen-induced actin assembly.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shasha Zhang ◽  
Ying Dong ◽  
Ruiying Qiang ◽  
Yuan Zhang ◽  
Xiaoli Zhang ◽  
...  

Striatin-interacting protein 1 (Strip1) is a core component of the striatin interacting phosphatase and kinase (STRIPAK) complex, which is involved in embryogenesis and development, circadian rhythms, type 2 diabetes, and cancer progression. However, the expression and role of Strip1 in the mammalian cochlea remains unclear. Here we studied the expression and function of Strip1 in the mouse cochlea by using Strip1 knockout mice. We first found that the mRNA and protein expression of Strip1 increases as mice age starting from postnatal day (P) 3 and reaches its highest expression level at P30 and that the expression of Strip1 can be detected by immunofluorescent staining starting from P14 only in cochlear HCs, and not in supporting cells (SCs). Next, we crossed Strip1 heterozygous knockout (Strip +/−) mice to obtain Strip1 homozygous knockout (Strip1−/−) mice for studying the role of Strip1 in cochlear HCs. However, no Strip1−/− mice were obtained and the ratio of Strip +/− to Strip1+/+ mice per litter was about 2:1, which suggested that homozygous Strip1 knockout is embryonic lethal. We measured hearing function and counted the HC number in P30 and P60 Strip +/− mice and found that they had normal hearing ability and HC numbers compared to Strip1+/+ mice. Our study suggested that Strip1 probably play important roles in HC development and maturation, which needs further study in the future.


Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4246-4253 ◽  
Author(s):  
Lynn S. Quek ◽  
Jean-Max Pasquet ◽  
Ingeborg Hers ◽  
Richard Cornall ◽  
Graham Knight ◽  
...  

Activation of platelets by collagen is mediated by the complex glycoprotein VI (GPVI)/Fc receptor γ (FcRγ chain). In the current study, the role of 2 Src family kinases, Fyn and Lyn, in GPVI signaling has been examined using murine platelets deficient in one or both kinases. In the fyn−/−platelets, tyrosine phosphorylation of FcRγ chain, phopholipase C (PLC) activity, aggregation, and secretion are reduced, though the time of onset of response is unchanged. In the lyn−/−platelets, there is a delay of up to 30 seconds in the onset of tyrosine phosphorylation and functional responses, followed by recovery of phosphorylation and potentiation of aggregation and α-granule secretion. Tyrosine phosphorylation and aggregation in response to stimulation by collagen-related peptide is further attenuated and delayed in fyn−/−lyn−/−double-mutant platelets, and potentiation is not seen. This study provides the first genetic evidence that Fyn and Lyn mediate FcR immune receptor tyrosine-based activation motif phosphorylation and PLCγ2 activation after the ligation of GPVI. Lyn plays an additional role in inhibiting platelet activation through an uncharacterized inhibitory pathway.


2013 ◽  
Vol 109 (03) ◽  
pp. 421-430 ◽  
Author(s):  
Trang Vu ◽  
James Fredenburgh ◽  
Jeffrey Weitz

SummaryThere is mounting evidence that zinc, the second most abundant transition metal in blood, is an important mediator of haemostasis and thrombosis. Prompted by the observation that zinc deficiency is associated with bleeding and clotting abnormalities, there now is evidence that zinc serves as an effector of coagulation, anticoagulation and fibrinolysis. Zinc binds numerous plasma proteins and modulates their structure and function. Because activated platelets secrete zinc into the local microenvironment, the concentration of zinc increases in the vicinity of a thrombus. Consequently, the role of zinc varies depending on the microenvironment; a feature that endows zinc with the capacity to spatially and temporally regulate haemostasis and thrombosis. This paper reviews the mechanisms by which zinc regulates coagulation, platelet aggregation, anticoagulation and fibrinolysis and outlines how zinc serves as a ubiquitous modulator of haemostasis and thrombosis.


2006 ◽  
Vol 17 (6) ◽  
pp. 2780-2788 ◽  
Author(s):  
Kohei Arasaki ◽  
May Taniguchi ◽  
Katsuko Tani ◽  
Mitsuo Tagaya

RINT-1 was first identified as a Rad50-interacting protein that participates in radiation-induced G2/M checkpoint control. We have recently reported that RINT-1, together with the dynamitin-interacting protein ZW10 and others, is associated with syntaxin 18, an endoplasmic reticulum (ER)-localized SNARE involved in membrane trafficking between the ER and Golgi. To address the role of RINT-1 in membrane trafficking, we examined the effects of overexpression and knockdown of RINT-1 on Golgi morphology and protein transport from the ER. Overexpression of the N-terminal region of RINT-1, which is responsible for the interaction with ZW10, caused redistribution of ZW10. Concomitantly, ER-to-Golgi transport was blocked and the Golgi was dispersed. Knockdown of RINT-1 also disrupted membrane trafficking between the ER and Golgi. Notably, silencing of RINT-1 resulted in a reduction in the amount of ZW10 associated with syntaxin 18, concomitant with ZW10 redistribution. In contrast, no redistribution or release of RINT-1 from the syntaxin 18 complex was observed when ZW10 expression was reduced. These results taken together suggest that RINT-1 coordinates the localization and function of ZW10 by serving as a link between ZW10 and the SNARE complex comprising syntaxin 18.


2021 ◽  
Vol 22 (19) ◽  
pp. 10656
Author(s):  
Samantha F. Moore ◽  
Ejaife O. Agbani ◽  
Andreas Wersäll ◽  
Alastair W. Poole ◽  
Chris M. Williams ◽  
...  

One of the mechanisms by which PI3 kinase can regulate platelet function is through phosphorylation of downstream substrates, including glycogen synthase kinase-3 (GSK3)α and GSK3β. Platelet activation results in the phosphorylation of an N-terminal serine residue in GSK3α (Ser21) and GSK3β(Ser9), which competitively inhibits substrate phosphorylation. However, the role of phosphorylation of these paralogs is still largely unknown. Here, we employed GSK3α/β phosphorylation-resistant mouse models to explore the role of this inhibitory phosphorylation in regulating platelet activation. Expression of phosphorylation-resistant GSK3α/β reduced thrombin-mediated platelet aggregation, integrin αIIbβ3 activation, and α-granule secretion, whereas platelet responses to the GPVI agonist collagen-related peptide (CRP-XL) were significantly enhanced. GSK3 single knock-in lines revealed that this divergence is due to differential roles of GSK3α and GSK3β phosphorylation in regulating platelet function. Expression of phosphorylation-resistant GSK3α resulted in enhanced GPVI-mediated platelet activation, whereas expression of phosphorylation-resistant GSK3β resulted in a reduction in PAR-mediated platelet activation and impaired in vitro thrombus formation under flow. Interestingly, the latter was normalised in double GSK3α/β KI mice, indicating that GSK3α KI can compensate for the impairment in thrombosis caused by GSK3β KI. In conclusion, our data indicate that GSK3α and GSK3β have differential roles in regulating platelet function.


Sign in / Sign up

Export Citation Format

Share Document