scholarly journals Enteropathogenic Escherichia coli and Vaccinia Virus Do Not Require the Family of WASP-Interacting Proteins for Pathogen-Induced Actin Assembly

2012 ◽  
Vol 80 (12) ◽  
pp. 4071-4077 ◽  
Author(s):  
John J. Garber ◽  
Fuminao Takeshima ◽  
Inés M. Antón ◽  
Michiko K. Oyoshi ◽  
Anna Lyubimova ◽  
...  

ABSTRACTThe human pathogens enteropathogenicEscherichia coli(EPEC) and vaccinia virus trigger actin assembly in host cells by activating the host adaptor Nck and the actin nucleation promoter neural Wiskott-Aldrich syndrome protein (N-WASP). EPEC translocates effector molecules into host cells via type III secretion, and the interaction between the translocated intimin receptor (Tir) and the bacterial membrane protein intimin stimulates Nck and N-WASP recruitment, leading to the formation of actin pedestals beneath adherent bacteria. Vaccinia virus also recruits Nck and N-WASP to generate actin tails that promote cell-to-cell spread of the virus. In addition to Nck and N-WASP, WASP-interacting protein (WIP) localizes to vaccinia virus tails, and inhibition of actin tail formation upon ectopic expression of WIP mutants led to the suggestion that WIP is required for this process. Similar studies of WIP mutants, however, did not affect the ability of EPEC to form actin pedestals, arguing against an essential role for WIP in EPEC-induced actin assembly. In this study, we demonstrate that Nck and N-WASP are normally recruited by vaccinia virus and EPEC in the absence of WIP, and neither WIP nor the WIP family members CR16 and WIRE/WICH are essential for pathogen induced actin assembly. In addition, although Nck binds EPEC Tir directly, N-WASP is required for its localization during pedestal formation. Overall, these data highlight similar pathogenic strategies shared by EPEC and vaccinia virus by demonstrating a requirement for both Nck and N-WASP, but not WIP or WIP family members in pathogen-induced actin assembly.

2011 ◽  
Vol 77 (14) ◽  
pp. 4949-4958 ◽  
Author(s):  
C. Sekse ◽  
M. Sunde ◽  
B.-A. Lindstedt ◽  
P. Hopp ◽  
T. Bruheim ◽  
...  

ABSTRACTA national survey ofEscherichia coliO26 in Norwegian sheep flocks was conducted, using fecal samples to determine the prevalence. In total, 491 flocks were tested, andE. coliO26 was detected in 17.9% of the flocks. One hundred forty-twoE. coliO26 isolates were examined for flagellar antigens (H typing) and four virulence genes, includingstxandeae, to identify possible Shiga toxin-producingE. coli(STEC) and enteropathogenicE. coli(EPEC). Most isolates (129 out of 142) were identified asE. coliO26:H11. They possessedeaeand may have potential as human pathogens, although only a small fraction were identified as STEC O26:H11, giving a prevalence in sheep flocks of only 0.8%. Correspondingly, the sheep flock prevalence of atypical EPEC (aEPEC) O26:H11 was surprisingly high (15.9%). The genetic relationship between theE. coliO26:H11 isolates was investigated by pulsed-field gel electrophoresis (PFGE) and multilocus variable number tandem repeat analysis (MLVA), identifying 63 distinct PFGE profiles and 22 MLVA profiles. Although the MLVA protocol was less discriminatory than PFGE and a few cases of disagreement were observed, comparison by partition mapping showed an overall good accordance between the two methods. A close relationship between a few isolates of aEPEC O26:H11 and STEC O26:H11 was identified, but all theE. coliO26:H11 isolates should be considered potentially pathogenic to humans. The present study consisted of a representative sampling of sheep flocks from all parts of Norway. This is the first large survey of sheep flocks focusing onE. coliO26 in general, including results of STEC, aEPEC, and nonpathogenic isolates.


2011 ◽  
Vol 80 (2) ◽  
pp. 493-505 ◽  
Author(s):  
Patrick D. Vigil ◽  
Travis J. Wiles ◽  
Michael D. Engstrom ◽  
Lev Prasov ◽  
Matthew A. Mulvey ◽  
...  

ABSTRACTUropathogenicEscherichia coli(UPEC) is responsible for the majority of uncomplicated urinary tract infections (UTI) and represents the most common bacterial infection in adults. UPEC utilizes a wide range of virulence factors to colonize the host, including the novel repeat-in-toxin (RTX) protein TosA, which is specifically expressed in the host urinary tract and contributes significantly to the virulence and survival of UPEC.tosA, found in strains within the B2 phylogenetic subgroup ofE. coli, serves as a marker for strains that also contain a large number of well-characterized UPEC virulence factors. The presence oftosAin anE. coliisolate predicts successful colonization of the murine model of ascending UTI, regardless of the source of the isolate. Here, a detailed analysis of the function oftosArevealed that this gene is transcriptionally linked to genes encoding a conserved type 1 secretion system similar to other RTX family members. TosA localized to the cell surface and was found to mediate (i) adherence to host cells derived from the upper urinary tract and (ii) survival in disseminated infections and (iii) to enhance lethality during sepsis (as assessed in two different animal models of infection). An experimental vaccine, using purified TosA, protected vaccinated animals against urosepsis. From this work, it was concluded that TosA belongs to a novel group of RTX proteins that mediate adherence and host damage during UTI and urosepsis and could be a novel target for the development of therapeutics to treat ascending UTIs.


2018 ◽  
Vol 86 (4) ◽  
Author(s):  
Maarten F. de Jong ◽  
Neal M. Alto

ABSTRACT The enteric attaching and effacing (A/E) pathogens enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) and the invasive pathogens enteroinvasive E. coli (EIEC) and Shigella encode type III secretion systems (T3SS) used to inject effector proteins into human host cells during infection. Among these are a group of effectors required for NF-κB-mediated host immune evasion. Recent studies have identified several effector proteins from A/E pathogens and EIEC/ Shigella that are involved in suppression of NF-κB and have uncovered their cellular and molecular functions. A novel mechanism among these effectors from both groups of pathogens is to coordinate effector function during infection. This cooperativity among effector proteins explains how bacterial pathogens are able to effectively suppress innate immune defense mechanisms in response to diverse classes of immune receptor signaling complexes (RSCs) stimulated during infection.


2019 ◽  
Vol 87 (10) ◽  
Author(s):  
Tracy H. Hazen ◽  
David A. Rasko

ABSTRACT Enteropathogenic Escherichia coli (EPEC) is a leading cause of moderate to severe diarrhea among young children in developing countries, and EPEC isolates can be subdivided into two groups. Typical EPEC (tEPEC) bacteria are characterized by the presence of both the locus of enterocyte effacement (LEE) and the plasmid-encoded bundle-forming pilus (BFP), which are involved in adherence and translocation of type III effectors into the host cells. Atypical EPEC (aEPEC) bacteria also contain the LEE but lack the BFP. In the current report, we describe the complete genome of outbreak-associated aEPEC isolate E110019, which carries four plasmids. Comparative genomic analysis demonstrated that the type III secreted effector EspT gene, an autotransporter gene, a hemolysin gene, and putative fimbrial genes are all carried on plasmids. Further investigation of 65 espT-containing E. coli genomes demonstrated that different espT alleles are associated with multiple plasmids that differ in their overall gene content from the E110019 espT-containing plasmid. EspT has been previously described with respect to its role in the ability of E110019 to invade host cells. While other type III secreted effectors of E. coli have been identified on insertion elements and prophages of the chromosome, we demonstrated in the current study that the espT gene is located on multiple unique plasmids. These findings highlight a role of plasmids in dissemination of a unique E. coli type III secreted effector that is involved in host invasion and severe diarrheal illness.


2015 ◽  
Vol 197 (14) ◽  
pp. 2316-2324 ◽  
Author(s):  
Yasushi Daimon ◽  
Shin-ichiro Narita ◽  
Yoshinori Akiyama

ABSTRACTσE, an alternative σ factor that governs a major signaling pathway in envelope stress responses in Gram-negative bacteria, is essential for growth ofEscherichia colinot only under stressful conditions, such as elevated temperature, but also under normal laboratory conditions. A mutational inactivation of thehicBgene has been reported to suppress the lethality caused by the loss of σE.hicBencodes the antitoxin of the HicA-HicB toxin-antitoxin (TA) system; overexpression of the HicA toxin, which exhibits mRNA interferase activity, causes cleavage of mRNAs and an arrest of cell growth, while simultaneous expression of HicB neutralizes the toxic effects of overproduced HicA. To date, however, how the loss of HicB rescues the cell lethality in the absence of σEand, more specifically, whether HicA is involved in this process remain unknown. Here we showed that simultaneous disruption ofhicAabolished suppression of the σEessentiality in the absence ofhicB, while ectopic expression of wild-type HicA, but not that of its mutant forms without mRNA interferase activity, restored the suppression. Furthermore, HicA and two other mRNA interferase toxins, HigB and YafQ, suppressed the σEessentiality even in the presence of chromosomally encoded cognate antitoxins when these toxins were overexpressed individually. Interestingly, when the growth media were supplemented with low levels of antibiotics that are known to activate toxins,E. colicells with no suppressor mutations grew independently of σE. Taken together, our results indicate that the activation of TA system toxins can suppress the σEessentiality and affect the extracytoplasmic stress responses.IMPORTANCEσEis an alternative σ factor involved in extracytoplasmic stress responses. Unlike other alternative σ factors, σEis indispensable for the survival ofE. colieven under unstressed conditions, although the exact reason for its essentiality remains unknown. Toxin-antitoxin (TA) systems are widely distributed in prokaryotes and are composed of two adjacent genes, encoding a toxin that exerts harmful effects on the toxin-producing bacterium itself and an antitoxin that neutralizes the cognate toxin. Curiously, it is known that inactivation of an antitoxin rescues the σEessentiality, suggesting a connection between TA systems and σEfunction. We demonstrate here that toxin activation is necessary for this rescue and suggest the possible involvement of TA systems in extracytoplasmic stress responses.


2012 ◽  
Vol 80 (12) ◽  
pp. 4417-4425 ◽  
Author(s):  
Xiaogang Wang ◽  
Philip R. Hardwidge

ABSTRACTThe NF-κB pathway regulates innate immune responses to infection. NF-κB is activated after pathogen-associated molecular patterns are detected, leading to the induction of proinflammatory host responses. As a countermeasure, bacterial pathogens have evolved mechanisms to subvert NF-κB signaling. EnterotoxigenicEscherichia coli(ETEC) causes diarrheal disease and significant morbidity and mortality for humans in developing nations. The extent to which this important pathogen subverts innate immune responses by directly targeting the NF-κB pathway is an understudied topic. Here we report that ETEC secretes a heat-stable, proteinaceous factor that blocks NF-κB signaling normally induced by tumor necrosis factor (TNF), interleukin-1β, and flagellin. Pretreating intestinal epithelial cells with ETEC supernatant significantly blocked the degradation of the NF-κB inhibitor IκBα without affecting IκBα phosphorylation. Data from immunoprecipitation experiments suggest that the ETEC factor functions by preventing IκBα polyubiquitination. Inhibiting clathrin function blocked the activity of the secreted ETEC factor, suggesting that this yet-uncharacterized activity may utilize clathrin-dependent endocytosis to enter host cells. These data suggest that ETEC evades the host innate immune response by directly modulating NF-κB signaling.


2019 ◽  
Vol 85 (8) ◽  
Author(s):  
Irene L. G. Newton ◽  
Barton E. Slatko

ABSTRACT Wolbachia pipientis is an alphaproteobacterial obligate intracellular microbe and arguably the most successful infection on our planet, colonizing 40% to 60% of insect species. Wolbachia spp. are also present in most, but not all, filarial nematodes, where they are obligate mutualists and are the targets for antifilarial drug discovery. Although Wolbachia spp. are related to important human pathogens, they do not infect mammals but instead are well known for their reproductive manipulations of insect populations, inducing the following phenotypes: male killing, feminization, parthenogenesis induction, and cytoplasmic incompatibility (CI). The most common of these, CI, results in a sperm-egg incompatibility and increases the relative fecundity of infected females in a population. In the last decade, Wolbachia spp. have also been shown to provide a benefit to insects, where the infection can inhibit RNA virus replication within the host. Wolbachia spp. cannot be cultivated outside host cells, and no genetic tools are available in the symbiont, limiting approaches available for their study. This means that many questions fundamental to our understanding of Wolbachia basic biology remained unknown for decades. The 10th biennial international Wolbachia conference, Wolbachia Evolution, Ecology, Genomics and Cell Biology: A Chronicle of the Most Ubiquitous Symbiont, was held on 17 to 22 June 2018 in Salem, MA. In this review, we highlight the new science presented at the meeting, link it to prior efforts to answer these questions across the Wolbachia genus, and present the importance of these findings to the field of symbiosis. The topics covered in this review are based on the presentations at the conference.


2013 ◽  
Vol 79 (15) ◽  
pp. 4613-4619 ◽  
Author(s):  
Patrick Studer ◽  
Werner E. Heller ◽  
Jörg Hummerjohann ◽  
David Drissner

ABSTRACTSprouts contaminated with human pathogens are able to cause food-borne diseases due to the favorable growth conditions for bacteria during germination and because of minimal processing steps prior to consumption. We have investigated the potential of hot humid air, i.e., aerated steam, to treat alfalfa and mung bean seeds which have been artificially contaminated withEscherichia coliO157:H7,Salmonella entericasubsp.entericaserovar Weltevreden, andListeria monocytogenesScott A. In addition, a recently collectedE. coliO178:H12 isolate, characterized by a reduced heat sensitivity, was exposed to the treatment described. Populations ofE. coliO157:H7 andS. entericaon alfalfa and mung bean seeds could be completely eliminated by a 300-s treatment with steam at 70 ± 1°C as revealed by enrichment studies.L. monocytogenesandE. coliO178:H12 could not be completely eliminated from artificially inoculated seeds. However, bacterial populations were reduced by more than 5 log CFU/g on alfalfa and by more than 4 log CFU/g on mung bean seeds. The germination rate of mung beans was not affected by the 300-s treatment compared to the germination rate of untreated seeds whereas that of alfalfa seeds was significantly lower by 11.9%. This chemical-free method is an effective alternative to the 20,000-ppm hypochlorite treatment presently recommended by the U.S. Food and Drug Administration (FDA).


2014 ◽  
Vol 197 (5) ◽  
pp. 905-912 ◽  
Author(s):  
Yuriy A. Knirel ◽  
Nikolai S. Prokhorov ◽  
Alexander S. Shashkov ◽  
Olga G. Ovchinnikova ◽  
Evelina L. Zdorovenko ◽  
...  

The O polysaccharide of the lipopolysaccharide (O antigen) of Gram-negative bacteria often serves as a receptor for bacteriophages that can make the phage dependent on a given O-antigen type, thus supporting the concept of the adaptive significance of the O-antigen variability in bacteria. The O-antigen layer also modulates interactions of many bacteriophages with their hosts, limiting the access of the viruses to other cell surface receptors. Here we report variations of O-antigen synthesis and structure in an environmentalEscherichia coliisolate, 4s, obtained from horse feces, and its mutants selected for resistance to bacteriophage G7C, isolated from the same fecal sample. The 4s O antigen was found to be serologically, structurally, and genetically related to the O antigen ofE. coliO22, differing only in side-chain α-d-glucosylation in the former, mediated by agtrlocus on the chromosome. Spontaneous mutations ofE. coli4s occurring with an unusually high frequency affected either O-antigen synthesis or O-acetylation due to the inactivation of the gene encoding the putative glycosyltransferase WclH or the putative acetyltransferase WclK, respectively, by the insertion of IS1-like elements. These mutations induced resistance to bacteriophage G7C and also modified interactions ofE. coli4s with several other bacteriophages conferring either resistance or sensitivity to the host. These findings suggest that O-antigen synthesis and O-acetylation can both ensure the specific recognition of the O-antigen receptor following infection by some phages and provide protection of the host cells against attack by other phages.


2014 ◽  
Vol 82 (9) ◽  
pp. 3644-3656 ◽  
Author(s):  
Michael D. Engstrom ◽  
Christopher J. Alteri ◽  
Harry L. T. Mobley

ABSTRACTA heterogeneous subset of extraintestinal pathogenicEscherichia coli(ExPEC) strains, referred to as uropathogenicE. coli(UPEC), causes most uncomplicated urinary tract infections. However, no core set of virulence factors exists among UPEC strains. Instead, the focus of the analysis of urovirulence has shifted to studying broad classes of virulence factors and the interactions between them. For example, the RTX nonfimbrial adhesin TosA mediates adherence to host cells derived from the upper urinary tract. The associatedtosoperon is well expressedin vivobut poorly expressedin vitroand encodes TosCBD, a predicted type 1 secretion system. TosR and TosEF are PapB and LuxR family transcription factors, respectively; however, no role has been assigned to these potential regulators. Thus, the focus of this study was to determine how TosR and TosEF regulatetosAand affect the reciprocal expression of adhesins and flagella. Among a collection of sequenced UPEC strains, 32% (101/317) were found to encode TosA, and nearly all strains (91% [92/101]) simultaneously carried the putative regulatory genes. Deletion oftosRalleviatestosArepression. Thetospromoter was localized upstream oftosRusing transcriptional fusions of putative promoter regions withlacZ. TosR binds to this region, affecting a gel shift. A 100-bp fragment 220 to 319 bp upstream oftosRinhibits binding, suggesting localization of the TosR binding site. TosEF, on the other hand, downmodulate motility when overexpressed by preventing the expression offliC, encoding flagellin. Deletion oftosEFincreased motility. Thus, we present an additional example of the reciprocal control of adherence and motility.


Sign in / Sign up

Export Citation Format

Share Document