Toll-like receptor 2/6 stimulation promotes angiogenesis via GM-CSF as a potential strategy for immune defense and tissue regeneration

Blood ◽  
2010 ◽  
Vol 115 (12) ◽  
pp. 2543-2552 ◽  
Author(s):  
Karsten Grote ◽  
Harald Schuett ◽  
Gustavo Salguero ◽  
Christina Grothusen ◽  
Joanna Jagielska ◽  
...  

AbstractToll-like receptors (TLRs) are known primarily as pathogen recognition receptors of the innate immunity, initiating inflammatory pathways to organize the immune defense. More recently, an involvement of TLRs in various physiologic and pathologic processes has been reported. Because many of these processes implicate angiogenesis, we here elucidated the role of a TLR2/6-dependent pathway on angiogenesis using the TLR2/6 agonist macrophage-activating lipopeptide of 2 kDa (MALP-2), a common bacterial lipopeptide. In vivo and in vitro Matrigel assays demonstrated that MALP-2 promoted angiogenesis in a TLR2/6-dependent manner. Moreover, MALP-2 induced endothelial cell proliferation and migration and a strong secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF). GM-CSF release in response to MALP-2 from isolated vascular segments was completely prevented when the endothelium was removed. MALP-2 containing Matrigel implants exhibited vascular structures as well as CD45+ cells. MALP-2 induced migration of leukocytes and likewise GM-CSF release, particularly from the monocyte population. Inhibition of GM-CSF by siRNA or antibodies suppressed MALP-2-induced angiogenesis in vitro and in vivo. These results clearly identified a TLR2/6-dependent induction of angiogenesis by the bacterial lipopeptide MALP-2, which is mediated by GM-CSF. This might represent a general mechanism to enhance or restore blood flow and recruit immune cells for pathogen defense and tissue regeneration.

2018 ◽  
Vol 51 (3) ◽  
pp. 1276-1286 ◽  
Author(s):  
Feng Liang ◽  
Yu-Gang Wang ◽  
Changcheng Wang

Background/Aims: This study aimed at investigating the effects of metformin on the growth and metastasis of esophageal squamous cell carcinoma (ESCC) in vitro and in vivo. Methods: Two human ESCC cell lines EC9706 and Eca109 were selected and challenged with metformin in this study. Western blot assay was performed to detect th level of Bcl-2, Bax and Caspase-3. Scratch wound assay, transwell assay and Millicell invasion assay were used to assay the invasion and migration of EC9706 and Eca109 cells. Nude mice tumor models were used to assay the growth and lung metastasis of ESCC cells after metformin treatment. The plasma glucose level was also assayed. Results: We found that metformin significantly inhibited proliferation and induced apoptosis of both ESCC cell lines in a dose- and time-dependent manner, and the expression of Bcl-2 was down-regulated and Bax and Caspase-3 were up-regulated. Metformin significantly inhibited the invasion and migration of EC9706 and Eca109 cells (p < 0.05). mRNA and protein levels of MMP-2 and MMP-9 decreased significantly upon treatment with metformin of 10mM for 12, 24 and 48h in a time-dependent manner (p < 0.05). In line with in vitro results, in vivo experiments demonstrated that metformin inhibited tumorigenicity, inhibited lung metastasis and down-regulated the expression of MMP-2 and MMP-9. Moreover, we showed that metformin treatment did not cause significant alteration in liver and renal functions and plasma glucose level. Conclusion: Our study for the first time demonstrated the anti-invasive and anti-metastatic effects of metformin on human ESCC cells both in vitro and in vivo, which might be associated with the down-regulation of MMP-2 and MMP-9. As a whole, our results indicate the potential of metformin to be developed as a chemotherapeutic agent for patients with ESCC and might stimulate future studies on this area.


2016 ◽  
Vol 311 (5) ◽  
pp. C758-C767 ◽  
Author(s):  
Pin Lv ◽  
Fan Zhang ◽  
Ya-Juan Yin ◽  
Yu-Can Wang ◽  
Min Gao ◽  
...  

We previously demonstrated that smooth muscle (SM) 22α promotes the migration activity in contractile vascular smooth muscle cells (VSMCs). Based on the varied functions exhibited by SM22α in different VSMC phenotypes, we investigated the effect of SM22α on VSMC migration under pathological conditions. The results demonstrated that SM22α overexpression in synthetic VSMCs inhibited platelet-derived growth factor (PDGF)-BB-induced cell lamellipodium formation and migration, which was different from its action in contractile cells. The results indicated two distinct mechanisms underlying inhibition of lamellipodium formation by SM22α, increased actin dynamic stability and decreased Ras activity via interference with interactions between Ras and guanine nucleotide exchange factor. The former inhibited actin cytoskeleton rearrangement in the cell cortex, while the latter significantly disrupted actin nucleation activation of the Arp2/3 complex. Baicalin, a herb-derived flavonoid compound, inhibited VSMC migration via upregulation of SM22α expression in vitro and in vivo. These data suggest that SM22α regulates lamellipodium formation and cell migration in a phenotype-dependent manner in VSMCs, which may be a new therapeutic target for vascular lesion formation.


2015 ◽  
Vol 113 (02) ◽  
pp. 319-328 ◽  
Author(s):  
Abdurazzag Abusnina ◽  
Thérèse Keravis ◽  
Qingwei Zhou ◽  
Hélène Justiniano ◽  
Annelise Lobstein ◽  
...  

SummaryVascular endothelial growth factor (VEGF) plays a major role in angiogenesis by stimulating endothelial cells. Increase in cyclic AMP (cAMP) level inhibits VEGF-induced endothelial cell proliferation and migration. Cyclic nucleotide phosphodiesterases (PDEs), which specifically hydrolyse cyclic nucleotides, are critical in the regulation of this signal transduction. We have previously reported that PDE2 and PDE4 up-regulations in human umbilical vein endothelial cells (HUVECs) are implicated in VEGF-induced angiogenesis and that inhibition of PDE2 and PDE4 activities prevents the development of the in vitro angiogenesis by increasing cAMP level, as well as the in vivo chicken embryo angiogenesis. We have also shown that polyphenols are able to inhibit PDEs. The curcumin having anti-cancer properties, the present study investigated whether PDE2 and PDE4 inhibitors and curcumin could have similar in vivo anti-tumour properties and whether the anti-angiogenic effects of curcumin are mediated by PDEs. Both PDE2/PDE4 inhibitor association and curcumin significantly inhibited in vivo tumour growth in C57BL/6N mice. In vitro, curcumin inhibited basal and VEGF-stimulated HUVEC proliferation and migration and delayed cell cycle progression at G0/G1, similarly to the combination of selective PDE2 and PDE4 inhibitors. cAMP levels in HUVECs were significantly increased by curcumin, similarly to rolipram (PDE4 inhibitor) and BAY-60–550 (PDE2 inhibitor) association, indicating cAMP-PDE inhibitions. Moreover, curcumin was able to inhibit VEGF-induced cAMP-PDE activity without acting on cGMP-PDE activity and to modulate PDE2 and PDE4 expressions in HUVECs. The present results suggest that curcumin exerts its in vitro anti-angiogenic and in vivo antitumour properties through combined PDE2 and PDE4 inhibition.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Ze Zhuang ◽  
Dongjie Yu ◽  
Zheng Chen ◽  
Dezhao Liu ◽  
Guohui Yuan ◽  
...  

Joint contracture is increasingly regarded as a clinical problem that leads to irreversible dysfunction of the joint. It is a pathophysiological process following joint injury, which is marked by the activation of myofibroblasts. There is currently no effective treatment for the prevention of joint contracture. Curcumin is a polyphenol pigment extracted from turmeric, which possesses anti-inflammatory, antioxidative, and antitumor properties. In the present study, we demonstrated that curcumin exerts a protective effect against joint contracture via the inhibition of myofibroblast proliferation and migration in a time- and concentration-dependent manner. Moreover, we indicated that phosphatase and tension homolog (PTEN) was downregulated in myofibroblasts in vitro and in the contracture capsule tissues of patients in vivo. Additionally, western blot analysis revealed a negative correlation between the expression levels of PTEN and the fibrosis marker protein alpha smooth muscle cell actin. Methylation-specific PCR results suggested that curcumin was able to demethylate PTEN in a similar manner to the demethylation agent 5-azacytidine, increasing PTEN expression and further inhibiting phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling. In conclusion, our data illustrate part of the mechanism of curcumin inhibition in joint contracture. These results support the hypothesis that curcumin may potentially be used as a novel candidate for the treatment of joint contracture.


2020 ◽  
Vol 10 (7) ◽  
pp. 930-938
Author(s):  
Dawei Zhang ◽  
Lin Xiong ◽  
Liang Li ◽  
Yuan Chen ◽  
Xiaojun Tang ◽  
...  

Objective: In order to investigate the effects of LMP1-Fab antibody on Nasopharyngeal carcinoma (NPC) cancer stem cells (CSCs). Methods/ Results: Methods were performed to study the effects of LMP1-Fab antibody on NPC CSCs in vivo and in vitro, for example, transwell chamber assay, wound healing assay, western blot assay, quantitative real-time PCR assay animal experiments, animal fluorescence imaging, H&E staining, immunohistochemistry. We identified that LMP1 activated the migration and invasion of NPC. Whereas the LMP1-Fab antibody inhibited cell invasion, epithelial-mesenchymal transition (EMT) and migration of NPC CSCs in LMP1+ HNE2 cells. Furthermore, LMP1-Fab antibody significantly increased the expression of E-cadherin, and reduced the expressions of vimentin,N -cadherin and Slug in LMP1+ HNE2 CSCs cells. Mechanistically, LMP1-Fab antibody inhibited lung and liver metastasis by regulating the wnt/ -catenin pathway in the nude mice. Conclusion: These results suggested that the novel antibody-targeting LMP1 is likely to be a potential strategy for the treatment of NPC.


2014 ◽  
Vol 9 (4) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Seon-Il Park ◽  
Toshiro Ohta ◽  
Shigenori Kumazawa ◽  
Mira Jun ◽  
Mok-Ryeon Ahn

Propolis, a sticky material that honeybees collect from living plants, has been used for its pharmaceutical properties since ancient times. In this study, we examined the effects of ethanol extracts of Korean propolis (EEKP) from various geographic regions on the inhibition of angiogenesis, both in vitro and in vivo. The effects of EEKP were tested on in vitro models of angiogenesis, that is, tube formation and proliferation of human umbilical vein endothelial cells (HUVECs). All EEKP samples exhibited significant inhibitory effects on tube formation of HUVECs in a concentration-dependent manner (6.25-25 μg/mL). In addition, two EEKP samples, prepared from Uijeongbu and Pyoseon propolis, significantly suppressed the proliferation of HUVECs in a concentration-dependent manner (3.13-25 μg/mL). Furthermore, in an in vivo angiogenesis assay using the chick embryo chorioallantoic membrane (CAM) system, we found that the two EEKP samples significantly reduced the number of newly formed vessels. These results indicate that Korean propolis may have potential applications in the prevention and treatment of angiogenesis-related diseases such as cancer.


2021 ◽  
Author(s):  
Keel Yong Lee ◽  
Huong Nguyen ◽  
Agustina Setiawati ◽  
So-Jung Nam ◽  
Minyoung Kim ◽  
...  

Abstract The unfolded states of fibronectin (FN) subsequently induce the formation of the extracellular matrix (ECM) fibrillar network, which is necessary to generate new substitutive tissues. Here, we demonstrate that negatively charged small unilamellar vesicles (SUVs) qualify as candidates for FN delivery due to their remarkable effects on the autonomous binding and unfolding of FN, which leads to increased tissue regeneration. In vitro experiments revealed that the FN-SUV complex remarkably increased the attachment, differentiation, and migration of fibroblasts. The potential utilization of this complex in vivo to treat inflammatory colon diseases is also described based on results obtained for ameliorated conditions in rats with ulcerative colitis (UC) that had been treated with the FN-SUV complex. Our findings provide a new ECM-delivery platform for ECM-based therapeutic applications and suggest that properly designed SUVs could be an unprecedented FN-delivery system that is highly effective in treating UC and other diseases.


2021 ◽  
Vol 11 ◽  
Author(s):  
Selvaraj Vimalraj ◽  
Raghunandhakumar Subramanian ◽  
Anuradha Dhanasekaran

The present study aims to analyze the expression of long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in human osteosarcoma (OS) cells and to investigate its role in OS-induced angiogenesis. MALAT1 expression in OS cells was significantly higher than in normal osteoblasts. The functional analysis indicated that MALAT1 appears to enhance OS-induced angiogenesis, in vitro and in vivo analyses, endothelial cell proliferation and migration, chick embryo angiogenesis assay, and zebrafish xenograft model. Mechanistically, silencing MALAT1 downregulated vascular endothelial growth factor A (VEGFA) expression and upregulated miR-150-5p expression in OS cells, and MALAT1-mediated angiogenic induction by VEGFA in OS microenvironment. Moreover, MALAT1 directly targeted miR-150-5p and miR-150-5p directly target VEGFA in OS. Overexpression of miR-150-5p downregulates VEGFA expression in OS. More notably, we showed that MALAT1 induced angiogenesis in OS microenvironment by upregulating the expression of VEGFA via targeting miR-150-5p. Overall, our findings suggest that MALAT1 promotes angiogenesis by regulating the miR-150-5p/VEGFA signaling in OS microenvironment. The findings of the molecular mechanisms of MALAT1 in tumor angiogenesis offer a new viewpoint on OS treatment.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Karsten Grote ◽  
Gustavo Salguero ◽  
Marc Dangers ◽  
Matthias Ballmaier ◽  
Bernhard Schieffer

Introduction: CCN1 is so far known as a protein of the extracellular matrix mediating proliferation, adhesion, migration and angiogenesis in an integrin-dependent manner. We recently reported that CCN1 is up-regulated under pathophysiological conditions in the cardiovascular system. Since blood CD34 + progenitor cells have been shown to promote tissue regeneration, we investigated if CCN1 induces angiogenesis by stimulating blood CD34 + cells. Methods and Results: Circulating CCN1 was detected for the first time in human serum samples (Western blot). Rekombinant CCN1 (100 ng/mL) and supernatants from CCN1-stimulated human CD34 + progenitor cells promoted tube-formation (Matrigel-Assay; P < 0.05; n = 4) and proliferation of endothelial cells (BrdU-incorporation; P < 0.05; n = 4). Moreover, CCN1 significantly induced angiogenesis in the context of blood CD34 + cells in vivo determined in Matrigel implanted into C57/BL6 mice as measured by the hemoglobin content (Drabkin’s reagent) and by CD31 staining (immunohistochemistry). In addition, CCN1 induced migration (Transwell cell culture inserts; 7.3 ± 1.3; P < 0.05; n = 4), transendothelial invasion (Transwell cell culture inserts; 2.3 ± 0.7; P < 0.05; n = 3) of CD34 + progenitor cells and release of various growth factors, chemokines (protein array; e.g. G-CSF, GM-CSF, CCL2, TGF-β1) and matrix metalloproteinase-9 (zymography; 2.5 ± 0.5-fold; P < 0.05; n = 6) from these cells. CD34 + progenitor cells expressed the CCN1-specific integrins α M β 2 and α V β 3 (flow cytometry) and binding of CCN1 to CD34 + progenitor cells was diminished by integrin antagonizing RGD peptides. Furthermore, CCN1 stimulated integrin-dependent signaling in CD34 + progenitor cells as shown by enhanced phosphorylation of focal adhesion kinase (immunofluorescence) and promoted their adhesion to endothelial cells which could be inhibited with RGD peptides (P < 0.01; n = 4). Conclusion: Circulating CCN1 binds integrin-specific to CD34 + blood cells and thereby induces migration, adhesion and the release of chemokines and MMPs. Moreover, CCN1-dependent stimulation of blood CD34 + cells promotes endothelial cell proliferation and angiogenesis known to be important for tissue regeneration.


1995 ◽  
Vol 182 (6) ◽  
pp. 2069-2077 ◽  
Author(s):  
Y Cao ◽  
C Chen ◽  
J A Weatherbee ◽  
M Tsang ◽  
J Folkman

We have found that two chemokines, recombinant gro-alpha and gro-beta, specifically inhibit growth factor-stimulated proliferation of capillary endothelial cells in a dose-dependent manner, whereas gro-gamma has no inhibitory effect. In vivo, gro-beta inhibits blood vessel formation in the chicken chorioallantoic membrane assay. It is sufficiently potent to effectively suppress basic fibroblast growth factor-induced corneal neovascularization after systemic administration in mice. Further, gro-beta significantly inhibits the growth of murine Lewis lung carcinoma in syngeneic C57B16/J and immunodeficient nude mice without toxicity. In vitro, Lewis lung carcinoma cells are completely insensitive to recombinant gro-beta at high concentrations that significantly inhibit endothelial cell proliferation. This finding supports the conclusion that gro-beta inhibits Lewis lung tumor growth by suppression of tumor-induced neovascularization.


Sign in / Sign up

Export Citation Format

Share Document