scholarly journals Granzyme B produced by human plasmacytoid dendritic cells suppresses T-cell expansion

Blood ◽  
2010 ◽  
Vol 115 (6) ◽  
pp. 1156-1165 ◽  
Author(s):  
Bernd Jahrsdörfer ◽  
Angelika Vollmer ◽  
Sue E. Blackwell ◽  
Julia Maier ◽  
Kai Sontheimer ◽  
...  

Abstract Human plasmacytoid dendritic cells (pDCs) are crucially involved in the modulation of adaptive T-cell responses in the course of neoplastic, viral, and autoimmune disorders. In several of these diseases elevated extracellular levels of the serine protease granzyme B (GrB) are observed. Here we demonstrate that human pDCs can be an abundant source of GrB and that such GrB+ pDCs potently suppress T-cell proliferation in a GrB-dependent, perforin-independent manner, a process reminiscent of regulatory T cells. Moreover, we show that GrB expression is strictly regulated on a transcriptional level involving Janus kinase 1 (JAK1), signal transducer and activator of transcription 3 (STAT3), and STAT5 and that interleukin-3 (IL-3), a cytokine secreted by activated T cells, plays a central role for GrB induction. Moreover, we find that the immunosuppressive cytokine IL-10 enhances, while Toll-like receptor agonists and CD40 ligand strongly inhibit, GrB secretion by pDCs. GrB-secreting pDCs may play a regulatory role for immune evasion of tumors, antiviral immune responses, and autoimmune processes. Our results provide novel information about the complex network of pDC–T-cell interactions and may contribute to an improvement of prophylactic and therapeutic vaccinations.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2674-2674
Author(s):  
Dorit Fabricius ◽  
Angelika Vollmer ◽  
Sue Blackwell ◽  
Julia Maier ◽  
Kai Sontheimer ◽  
...  

Abstract Abstract 2674 Poster Board II-650 Human plasmacytoid dendritic cells (pDC) play a central role in regulating adaptive T cell responses in the course of neoplastic, viral and autoimmune disorders. In several of these diseases, elevated extracellular levels of the serine protease granzyme B (GrB) are observed. We found that human pDC can be an abundant source of GrB based on FACS analysis, ELISpot, ELISA, Sensizyme, Western immunoblotting, RT-PCR, and fluorescence microscopy. GrB is actively secreted by pDCs and reaches maximal levels up to two logs higher than those produced by classical GrB producers such as CTL or NK cells. However, pDC GrB production is not accompanied by perforin secretion. Spinning disk confocal microscopy revealed that GrB+ pDC bind to and transfer active GrB to T cells. Importantly, this GrB transfer induces a suppression of T cell proliferation in a GrB-dependent, perforin-independent manner, a process reminiscent of regulatory T cells. GrB expression in pDC is regulated on a transcriptional level by JAK1, STAT3 and STAT5. IL-3 and IL-10 enhance GrB production by pDCs while GrB production is inhibited by toll-like-receptor agonists and CD40 ligand. These findings suggest that GrB production by pDCs is involved in the complex interactions between pDC and T cells and that GrB-secreting pDC may play a regulatory role related to anti-tumor immunity, anti-viral immune responses, and autoimmune processes. Disclosures: No relevant conflicts of interest to declare.


2002 ◽  
Vol 195 (6) ◽  
pp. 695-704 ◽  
Author(s):  
Michel Gilliet ◽  
Yong-Jun Liu

Although CD8 T cell–mediated immunosuppression has been a well-known phenomenon during the last three decades, the nature of primary CD8 T suppressor cells and the mechanism underlying their generation remain enigmatic. We demonstrated that naive CD8 T cells primed with allogeneic CD40 ligand–activated plasmacytoid dendritic cells (DC)2 differentiated into CD8 T cells that displayed poor secondary proliferative and cytolytic responses. By contrast, naive CD8 T cells primed with allogeneic CD40 ligand–activated monocyte-derived DCs (DC1) differentiated into CD8 T cells, which proliferated to secondary stimulation and killed allogeneic target cells. Unlike DC1-primed CD8 T cells that produced large amounts of interferon (IFN)-γ upon restimulation, DC2-primed CD8 T cells produced significant amounts of interleukin (IL)-10, low IFN-γ, and no IL-4, IL-5, nor transforming growth factor (TGF)-β. The addition of anti–IL-10–neutralizing monoclonal antibodies during DC2 and CD8 T cell coculture, completely blocked the generation of IL-10–producing anergic CD8 T cells. IL-10–producing CD8 T cells strongly inhibit the allospecific proliferation of naive CD8 T cells to monocytes, and mature and immature DCs. This inhibition was mediated by IL-10, but not by TGF-β. IL-10–producing CD8 T cells could inhibit the bystander proliferation of naive CD8 T cells, provided that they were restimulated nearby to produce IL-10. IL-10–producing CD8 T cells could not inhibit the proliferation of DC1-preactivated effector T cells. This study demonstrates that IL-10–producing CD8 T cells are regulatory T cells, which provides a cellular basis for the phenomenon of CD8 T cell–mediated immunosuppression and suggests a role for plasmacytoid DC2 in immunological tolerance.


2015 ◽  
Vol 75 (9) ◽  
pp. 1728-1734 ◽  
Author(s):  
Dag Leonard ◽  
Maija-Leena Eloranta ◽  
Niklas Hagberg ◽  
Olof Berggren ◽  
Karolina Tandre ◽  
...  

ObjectivesPatients with systemic lupus erythematosus (SLE) have an ongoing interferon-α (IFN-α) production by plasmacytoid dendritic cells (pDCs). We investigated whether T cells can promote IFN-α production by pDCs.MethodsHuman pDCs were stimulated with immune complexes (ICs) containing U1 small nuclear ribonucleic proteins particles and SLE-IgG (RNA-IC) in the presence of T cells or T cell supernatants. T cells were activated by anti-CD3/CD28 antibodies or in a mixed leucocyte reaction. IFN-α and other cytokines were determined in culture supernatants or patient sera with immunoassays. The effect of interleukin (IL) 3 and granulocyte-macrophage-colony-stimulating factor (GM-CSF) on pDCs was examined by the use of antibodies, and the expression of CD80/CD86 was determined using flow cytometry.ResultsActivated T cells and supernatants from activated T cells increased IFN-α production by >20-fold. The stimulatory effect of T cell supernatants was reduced after depletion of GM-CSF (81%) or by blocking the GM-CSF receptor (55%–81%). Supernatant from activated T cells, furthermore, increased the frequency of CD80 and CD86 expressing pDCs stimulated with RNA-IC from 6% to 35% (p<0.05) and from 10% to 26% (p<0.01), respectively. Activated SLE T cells enhanced IFN-α production to the same extent as T cells from healthy individuals and a subset of patients with SLE had increased serum levels of GM-CSF.ConclusionsActivated T cells enhance IFN-α production by RNA-IC stimulated pDCs via GM-CSF and induce pDC maturation. Given the increased serum levels of GM-CSF in a subset of patients with SLE, these findings suggest that activated T cells may upregulate type I IFN production in SLE.


Blood ◽  
2006 ◽  
Vol 107 (3) ◽  
pp. 1010-1017 ◽  
Author(s):  
Peta J. O'Connell ◽  
Xiangbin Wang ◽  
Matilde Leon-Ponte ◽  
Corrie Griffiths ◽  
Sandeep C. Pingle ◽  
...  

AbstractAdaptive immunity is triggered at the immune synapse, where peptide-major histocompatibility complexes and costimulatory molecules expressed by dendritic cells (DCs) are physically presented to T cells. Here we describe transmission of the inflammatory monoamine serotonin (5-hydroxytryptamine [5-HT]) between these cells. DCs take up 5-HT from the microenvironment and from activated T cells (that synthesize 5-HT) and this uptake is inhibited by the antidepressant, fluoxetine. Expression of 5-HT transporters (SERTs) is regulated by DC maturation, exposure to microbial stimuli, and physical interactions with T cells. Significantly, 5-HT sequestered by DCs is stored within LAMP-1+ vesicles and subsequently released via Ca2+-dependent exocytosis, which was confirmed by amperometric recordings. In turn, extracellular 5-HT can reduce T-cell levels of cAMP, a modulator of T-cell activation. Thus, through the uptake of 5-HT at sites of inflammation, and from activated T cells, DCs may shuttle 5-HT to naive T cells and thereby modulate T-cell proliferation and differentiation. These data constitute the first direct measurement of triggered exocytosis by DCs and reveal a new and rapid type of signaling that may be optimized by the intimate synaptic environment between DCs and T cells. Moreover, these results highlight an important role for 5-HT signaling in immune function and the potential consequences of commonly used drugs that target 5-HT uptake and release.


Rheumatology ◽  
2019 ◽  
Vol 58 (11) ◽  
pp. 2051-2060 ◽  
Author(s):  
Giovanni Almanzar ◽  
Felix Kienle ◽  
Marc Schmalzing ◽  
Anna Maas ◽  
Hans-Peter Tony ◽  
...  

AbstractObjectiveRA is a chronic inflammatory disease characterized by lymphocyte infiltration and release of inflammatory cytokines. Previous studies have shown that treatment with Janus kinase inhibitors, such as tofacitinib, increased the incidence rate of herpes zoster compared with conventional DMARDs. Therefore, this study aimed to investigate the effect of tofacitinib on the varicella-zoster-virus (VZV)-specific T cell immune response.MethodsThe effect of tofacitinib on the VZV-specific T cell immune response was determined by evaluating the IFNγ production, the proliferative capacity, the VZV-induced differentiation into effector and memory T cells, the expression of activation marker CD69 and helper T cell type 1 (Th1)-characteristic chemokine receptors, such as CXCR3 and CCR5, as well as cytotoxic activity (perforin and granzyme B expression) of CD4+ T cells of patients with RA compared with healthy donors upon stimulation with VZV antigen in vitro.ResultsTofacitinib significantly reduced the IFNγ production, proliferation, activation, and CXCR3 expression of VZV-specific CD4+ T cells in a dose-dependent manner in short- and long-term lymphocyte culture. No effect on the distribution of naive, effectors or memory, or on the expression of perforin or granzyme B by VZV-specific CD4+ T cells was observed.ConclusionThis study showed that tofacitinib significantly modulated the Th1 response to VZV. The poor VZV-specific cellular immune response in patients with RA may be considered in recommendations regarding appropriate vaccination strategies for enhancing the VZV-specific Th1 response.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4138-4138
Author(s):  
Kankana Bardhan ◽  
Nikolaos Patsoukis ◽  
Donna M Berry ◽  
Jane McGlade ◽  
Vassiliki A. Boussiotis

Abstract TCR stimulation triggers the activation of protein tyrosine kinases resulting in phosphorylation of the adaptor protein LAT. SLP-76, interacts constitutively with PLC-γ1 and with the SH3 domain of Gads, which via its SH2 domain mediates inducible recruitment of SLP-76 and PLC-γ1 to LAT, upon T cell activation. PLC-γ1 hydrolyzes phosphatidylinositol-4, 5 bisphosphate [PI(4,5)P2], generating inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), second messengers responsible for mediating intracellular calcium release and activation of downstream signals. The adaptor protein RIAM constitutively interacts with PLC-γ1 and is required for PLC-γ1 activation. RIAM is a multidomain protein with a small N-terminus proline-rich region, two coiled-coiled regions, sequential Ras association (RA) and pleckstrin homology (PH) domains, and a large C-terminus proline-rich region, which interacts with PLC-γ1. The RA domain of RIAM has specificity for Rap1-GTP whereas the PH domain binds to the PLC-γ1 substrate PI(4,5)P2. The RA-PH domain region of RIAM functions as a single structural unit and mediates translocation of RIAM to the plasma membrane upon T cell activation. Previously, we determined that RIAM deficiency results in impaired activation of PLC-γ1 in spite of the formation of the PLC-γ1-SLP-76-LAT complex, suggesting perhaps somewhat paradoxically, that PLC-γ1-SLP-76-LAT signalosome is not sufficient to mediate distal signaling in the absence of RIAM. This observation indicated that RIAM mediates its effects at a level distal to SLP-76-LAT or through a signaling pathway parallel but distinct from SLP-76-Gads-LAT. Here we investigated whether RIAM forms a signalosome parallel to PLC-γ1-SLP-76-Gads and whether such pathway might be involved in the activation of PLC-γ1. Using primary T lymphocytes and Jurkat T cells stimulated via TCR/CD3 and CD28 we determined that RIAM constitutively interacted with Gads as determined by immunoprecipitation with RIAM-specific antibody followed by Gads immunoblot. To determine whether the interaction between RIAM and Gads was direct, we employed an in vitro protein association assay. Glutathione S-transferase (GST) and GST-fusion protein of Gads were coupled to glutathione-sepharose and incubated with [35S]methionine-labeled RIAM or luciferase, as negative control. Gads bound to [35S]methionine-labeled RIAM indicating that RIAM interacts directly with Gads. We further examined domain-specific interaction of RIAM with endogenous Gads using GST fusion proteins of RIAM. We determined a constitutive interaction between Gads and GST fusion proteins of full-length RIAM or C-terminus region of RIAM. Although a number of tyrosine phosphorylated proteins were associated with the RIAM-Gads complex upon T cell activation, LAT was not detected among the components of this complex as determined by immunoblot with anti-phosphotyrosine-specific or LAT-specific antibodies. Using a GST fusion protein of the RA-PH domain of RIAM we determined that, surprisingly, Gads displayed activation-dependent interaction with the RA-PH domain, which mediates the recruitment of RIAM to the plasma membrane upon T cell activation. Furthermore, in addition to Gads, SLP-76 and PLC-γ1 were recruited to the RA-PH domain of RIAM in activated T cells. To determine whether RIAM and Gads had a synergistic effect on IL-2 transcription, we performed luciferase-based reporter assays using a reporter construct driven by the entire IL-2 promoter or by NFAT binding sequences. We found that RIAM and Gads had a synergistic effect on IL-2 and on NFAT-mediated transcriptional activation, which depends on PLC-γ1. Thus, via its C-terminus region, RIAM directly and constitutively interacts with Gads. In addition, via its RA-PH domain, RIAM mediates an activation-dependent interaction with Gads and serves as a docking site recruiting the PLC-γ1-SLP-76-Gads complex to the plasma membrane in a LAT-independent manner. These findings indicate a crosstalk between RIAM and SLP-76 in the activation of PLC-γ1 and reveal a previously unidentified, alternative signaling pathway leading to Gads-SLP-76 recruitment to the plasma membrane of activated T cells in a LAT-independent manner. Disclosures No relevant conflicts of interest to declare.


2014 ◽  
Vol 194 (3) ◽  
pp. 999-1010 ◽  
Author(s):  
Audrey Baeyens ◽  
David Saadoun ◽  
Fabienne Billiard ◽  
Angéline Rouers ◽  
Sylvie Grégoire ◽  
...  

2013 ◽  
Vol 210 (9) ◽  
pp. 1855-1869 ◽  
Author(s):  
Zamaneh Mikhak ◽  
James P. Strassner ◽  
Andrew D. Luster

T cell trafficking into the lung is critical for lung immunity, but the mechanisms that mediate T cell lung homing are not well understood. Here, we show that lung dendritic cells (DCs) imprint T cell lung homing, as lung DC–activated T cells traffic more efficiently into the lung in response to inhaled antigen and at homeostasis compared with T cells activated by DCs from other tissues. Consequently, lung DC–imprinted T cells protect against influenza more effectively than do gut and skin DC–imprinted T cells. Lung DCs imprint the expression of CCR4 on T cells, and CCR4 contributes to T cell lung imprinting. Lung DC–activated, CCR4-deficient T cells fail to traffic into the lung as efficiently and to protect against influenza as effectively as lung DC–activated, CCR4-sufficient T cells. Thus, lung DCs imprint T cell lung homing and promote lung immunity in part through CCR4.


Sign in / Sign up

Export Citation Format

Share Document