A mechanistic rationale for combining alemtuzumab and rituximab in the treatment of ALL

Blood ◽  
2010 ◽  
Vol 116 (26) ◽  
pp. 5930-5940 ◽  
Author(s):  
Bart A. Nijmeijer ◽  
Marianke L. J. van Schie ◽  
Constantijn J. M. Halkes ◽  
Marieke Griffioen ◽  
Roelof Willemze ◽  
...  

Abstract B-lineage acute lymphoblastic leukemia (ALL) may express CD52 and CD20. Alemtuzumab (ALM) and rituximab (RTX) are therapeutic antibodies directed against CD52 and CD20, respectively, but showed limited activity against ALL in clinical trials. The mechanisms for the impaired responses remained unclear. We studied expression of CD52 and CD20 on ALL cells and found that most cases coexpressed CD52 and CD20. However, distinct CD52-negative (CD52−) subpopulations were detected in most cases as the result of defective glycophosphatidyl-inositol anchoring. Although ALM efficiently eradicated CD52-positive (CD52+) cells in NOD/scid mice engrafted with primary human ALL, CD52− subclones escaped therapy. In the same model, RTX showed limited activity resulting from occurrence of CD20 down-modulation. However, CD52− cells concurrently lacked the glycophosphatidyl-inositol–anchored complement regulators CD55 and CD59 and showed increased susceptibility to RTX-mediated complement-dependent cytotoxicity in vitro. At the same time, ALM was shown to inhibit down-modulation of CD20 in response to RTX by depleting the trogocytic capacity of phagocytic cells. Probably because of these complementary mechanisms, combined administration of ALM and RTX induced complete responses in vivo. Based on these data, we propose a mechanistic rationale for combined application of RTX and ALM in ALL.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3905-3905 ◽  
Author(s):  
Ursula J.E. Seidel ◽  
Ludger Grosse-Hovest ◽  
Patrick Schlegel ◽  
Martin Hofmann ◽  
Friedhelm R. Schuster ◽  
...  

Abstract B-lineage acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Although this disease can be curatively treated in 80% of patients by chemotherapy, prognosis for primary refractory or relapsed patients is very poor. Even after allogeneic stem cell transplantation (SCT), relapse rates are considerable and correlate significantly with persistent minimal residual disease (MRD) prior to or after SCT. Since a MRD constellation represents favorable effector-target ratios it is well suited for immunotherapy with therapeutic antibodies. We developed and produced a third-generation CD19-specific monoclonal antibody (mAb) (4G7SDIE) in clinical-grade quality at a university-owned production unit. This high affinity Fc-optimized chimerized CD19-specific mAb mediates enhanced antibody-dependent cellular cytotoxicity (ADCC) by NK cells through its improved capability to recruit FcγRIIIa bearing effector cells. In this study, 4G7SDIE was applied within the scope of a compassionate use program in pediatric patients with relapsed or refractory B-lineage ALL and characterized in vitro and in vivo. Firstly, it was confirmed that CD19 is commonly and stably expressed in pediatric B-lineage ALL by quantitative flow cytometry analysis of primary leukemic blasts (mean expression: 1.4x104 CD19 molecules/cell; range 4.5x103-2.4x104; n = 18). Hence CD19 is a well suited target for immunotherapy of pediatric B-lineage ALL. Half-saturating concentrations of 4G7SDIE on primary leukemic blasts and cell line NALM-16 were reached at EC50= 85 ng/ml (± 29). Half-maximal target cell lysis was reached at EC50 = 25 ng/ml. Furthermore, lysis of primary B-lineage ALL blasts by PBMC of 4 healthy donors could be significantly increased by 22% when adding 1 µg/ml 4G7SDIE to donor serum in 2 h-cytotoxicity assays (n = 9; p = 0.03). 4G7SDIE was applied in 11 pediatric patients with relapsed or refractory B-lineage ALL in order to reduce or eradicate MRD and thus prevent relapse in these high-risk pre- and post-transplant patients. Especially, in a post-transplant context, with a high number of allogeneic NK effector cells available, use of an ADCC-mediating mAb shows potential. In 6/9 treated patients with detectable MRD, leukemic load was reduced by ≥ 1 log or pushed below detection limit (10-4) through immunotherapy with 4G7SDIE. Moreover, 2 further patients responded to 4G7SDIE treatment. However, they received additional therapy with tyrosine-kinase inhibitors. Five of the treated patients eventually relapsed, 5 other patients went into remission after 4G7SDIE application (range 27-597 days). Concomitant in vitro 2 h-cytotoxicity assays with donor-derived PBMC of 2 treated patients showed that NK-cell mediated lysis of autologous B-lineage ALL blasts was increased by 33%, when adding 1 µg/ml 4G7SDIE or by 22% when adding autologous patient serum taken after antibody treatment (n = 8; p = 0.02). Serum half-life of 4G7SDIE in the first treatment cycles ranged between 20 h and 43 h and after infusion of 20 mg/m2, saturating serum concentrations of ≥700 ng/ml were detectable for at least 13 days. In a standardized model with MCF7-CD19-transfectants, expressing various CD19 levels on the cell surface, a correlation between increasing CD19 molecules/cell and increasing specific lysis by PBMC of healthy donors coincubated with 4G7SDIE was shown (spearman r = 0.88; p = 0.01). Strikingly, in 3 patients with residual disease detectable by flow cytometry, a down-modulation of CD19 on leukemic blasts under 4G7SDIE therapy was observed. In one patient up-regulation of CD19 after discontinuation of 4G7SDIE treatment was observed. In vitro antigenic shift assays on primary leukemic blasts showed considerable but very heterogeneous shift of CD19 surface expression. These observations hint at in vivotumor escape mechanisms and furthermore indicate selective pressure exerted by immunotherapy with 4G7SDIE, underlining its therapeutic potential, but also delineating its limitations. In conclusion, promising antileukemic effects have been observed in vitro and in vivo in this compassionate use program. However, potential CD19 down-modulation upon immunotherapy should be taken into account and may indicate the relevance of optimized treatment schedules and dosage as well as specific patient selection. We are currently setting up a clinical trial. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuiyan Wu ◽  
You Jiang ◽  
Yi Hong ◽  
Xinran Chu ◽  
Zimu Zhang ◽  
...  

Abstract Background T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease with a high risk of induction failure and poor outcomes, with relapse due to drug resistance. Recent studies show that bromodomains and extra-terminal (BET) protein inhibitors are promising anti-cancer agents. ARV-825, comprising a BET inhibitor conjugated with cereblon ligand, was recently developed to attenuate the growth of multiple tumors in vitro and in vivo. However, the functional and molecular mechanisms of ARV-825 in T-ALL remain unclear. This study aimed to investigate the therapeutic efficacy and potential mechanism of ARV-825 in T-ALL. Methods Expression of the BRD4 were determined in pediatric T-ALL samples and differential gene expression after ARV-825 treatment was explored by RNA-seq and quantitative reverse transcription-polymerase chain reaction. T-ALL cell viability was measured by CCK8 assay after ARV-825 administration. Cell cycle was analyzed by propidium iodide (PI) staining and apoptosis was assessed by Annexin V/PI staining. BRD4, BRD3 and BRD2 proteins were detected by western blot in cells treated with ARV-825. The effect of ARV-825 on T-ALL cells was analyzed in vivo. The functional and molecular pathways involved in ARV-825 treatment of T-ALL were verified by western blot and chromatin immunoprecipitation (ChIP). Results BRD4 expression was higher in pediatric T-ALL samples compared with T-cells from healthy donors. High BRD4 expression indicated a poor outcome. ARV-825 suppressed cell proliferation in vitro by arresting the cell cycle and inducing apoptosis, with elevated poly-ADP ribose polymerase and cleaved caspase 3. BRD4, BRD3, and BRD2 were degraded in line with reduced cereblon expression in T-ALL cells. ARV-825 had a lower IC50 in T-ALL cells compared with JQ1, dBET1 and OTX015. ARV-825 perturbed the H3K27Ac-Myc pathway and reduced c-Myc protein levels in T-ALL cells according to RNA-seq and ChIP. In the T-ALL xenograft model, ARV-825 significantly reduced tumor growth and led to the dysregulation of Ki67 and cleaved caspase 3. Moreover, ARV-825 inhibited cell proliferation by depleting BET and c-Myc proteins in vitro and in vivo. Conclusions BRD4 indicates a poor prognosis in T-ALL. The BRD4 degrader ARV-825 can effectively suppress the proliferation and promote apoptosis of T-ALL cells via BET protein depletion and c-Myc inhibition, thus providing a new strategy for the treatment of T-ALL.


Blood ◽  
2020 ◽  
Vol 136 (2) ◽  
pp. 210-223 ◽  
Author(s):  
Eun Ji Gang ◽  
Hye Na Kim ◽  
Yao-Te Hsieh ◽  
Yongsheng Ruan ◽  
Heather A. Ogana ◽  
...  

Abstract Resistance to multimodal chemotherapy continues to limit the prognosis of acute lymphoblastic leukemia (ALL). This occurs in part through a process called adhesion-mediated drug resistance, which depends on ALL cell adhesion to the stroma through adhesion molecules, including integrins. Integrin α6 has been implicated in minimal residual disease in ALL and in the migration of ALL cells to the central nervous system. However, it has not been evaluated in the context of chemotherapeutic resistance. Here, we show that the anti-human α6-blocking Ab P5G10 induces apoptosis in primary ALL cells in vitro and sensitizes primary ALL cells to chemotherapy or tyrosine kinase inhibition in vitro and in vivo. We further analyzed the underlying mechanism of α6-associated apoptosis using a conditional knockout model of α6 in murine BCR-ABL1+ B-cell ALL cells and showed that α6-deficient ALL cells underwent apoptosis. In vivo deletion of α6 in combination with tyrosine kinase inhibitor (TKI) treatment was more effective in eradicating ALL than treatment with a TKI (nilotinib) alone. Proteomic analysis revealed that α6 deletion in murine ALL was associated with changes in Src signaling, including the upregulation of phosphorylated Lyn (pTyr507) and Fyn (pTyr530). Thus, our data support α6 as a novel therapeutic target for ALL.


Blood ◽  
2021 ◽  
Author(s):  
Alexandra Sipol ◽  
Erik Hameister ◽  
Busheng Xue ◽  
Julia Hofstetter ◽  
Maxim Barenboim ◽  
...  

Cancer cells are in most instances characterized by rapid proliferation and uncontrolled cell division. Hence, they must adapt to proliferation-induced metabolic stress through intrinsic or acquired anti-metabolic stress responses to maintain homeostasis and survival. One mechanism to achieve this is to reprogram gene expression in a metabolism-dependent manner. MondoA (also known as MLXIP), a member of the MYC interactome, has been described as an example of such a metabolic sensor. However, the role of MondoA in malignancy is not fully understood and the underlying mechanism in metabolic responses remains elusive. By assessing patient data sets we found that MondoA overexpression is associated with a worse survival in pediatric common acute lymphoblastic leukemia (B-ALL). Using CRISPR/Cas9 and RNA interference approaches, we observed that MondoA depletion reduces transformational capacity of B-ALL cells in vitro and dramatically inhibits malignant potential in an in vivo mouse model. Interestingly, reduced expression of MondoA in patient data sets correlated with enrichment in metabolic pathways. The loss of MondoA correlated with increased tricarboxylic acid (TCA) cycle activity. Mechanistically, MondoA senses metabolic stress in B-ALL cells by restricting oxidative phosphorylation through reduced PDH activity. Glutamine starvation conditions greatly enhance this effect and highlight the inability to mitigate metabolic stress upon loss of MondoA in B-ALL. Our findings give a novel insight into the function of MondoA in pediatric B-ALL and support the notion that MondoA inhibition in this entity offers a therapeutic opportunity and should be further explored.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 21-21
Author(s):  
Gisele Olinto Libanio Rodrigues ◽  
Julie Hixon ◽  
Hila Winer ◽  
Erica Matich ◽  
Caroline Andrews ◽  
...  

Mutations of the IL-7Rα chain occur in approximately 10% of pediatric T-cell acute lymphoblastic leukemia cases. While we have shown that mutant IL7Ra is sufficient to transform an immortalized thymocyte cell line, mutation of IL7Ra alone was insufficient to cause transformation of primary T cells, suggesting that additional genetic lesions may be present contributing to initiate leukemia. Studies addressing the combinations of mutant IL7Ra plus TLX3 overexpression indicates in vitro growth advantage, suggesting this gene as potential collaborative candidate. Furthermore, patients with mutated IL7R were more likely to have TLX3 or HOXA subgroup leukemia. We sought to determine whether combination of mutant hIL7Ra plus TLX3 overexpression is sufficient to generate T-cell leukemia in vivo. Double negative thymocytes were isolated from C57BL/6J mice and transduced with retroviral vectors containing mutant hIL7R plus hTLX3, or the genes alone. The combination mutant hIL7R wild type and hTLX3 was also tested. Transduced thymocytes were cultured on the OP9-DL4 bone marrow stromal cell line for 5-13 days and accessed for expression of transduced constructs and then injected into sublethally irradiated Rag-/- mice. Mice were euthanized at onset of clinical signs, and cells were immunophenotyped by flow cytometry. Thymocytes transduced with muthIL-7R-hTLX3 transformed to cytokine-independent growth and expanded over 30 days in the absence of all cytokines. Mice injected with muthIL7R-hTLX3 cells, but not the controls (wthIL7R-hTLX3or mutIL7R alone) developed leukemia approximately 3 weeks post injection, characterized by GFP expressing T-cells in blood, spleen, liver, lymph nodes and bone marrow. Furthermore, leukemic mice had increased white blood cell counts and presented with splenomegaly. Phenotypic analysis revealed a higher CD4-CD8- T cell population in the blood, bone marrow, liver and spleen compared in the mutant hIL7R + hTLX3 mice compared with mice injected with mutant IL7R alone indicating that the resulting leukemia from the combination mutant hIL7R plus hTLX3 shows early arrest in T-cell development. Taken together, these data show that oncogenic IL7R activation is sufficient for cooperation with hTLX3 in ex vivo thymocyte cell transformation, and that cells expressing the combination muthIL7R-hTLX3 is sufficient to trigger T-cell leukemia in vivo. Figure Disclosures No relevant conflicts of interest to declare.


1994 ◽  
Vol 266 (6) ◽  
pp. L593-L611 ◽  
Author(s):  
M. D. Evans ◽  
W. A. Pryor

The proteinase-antiproteinase theory for the pathogenesis of emphysema proposes that the connective tissue destruction associated with emphysema arises from excessive proteinase activity in the lower respiratory tract. For this reason, the relative activities of neutrophil elastase and alpha 1-proteinase inhibitor (alpha 1-PI) are considered important. Most emphysema is observed in smokers; therefore, alpha 1-PI has been studied as a target for smoke-induced damage. Damage to alpha 1-PI in lung fluid could occur by several mechanisms involving species delivered to the lung by cigarette smoke and/or stimulated inflammatory cells. Oxidative damage to alpha 1-PI has received particular attention, since both cigarette smoke and inflammatory cells are rich sources of oxidants. In this article we review almost two decades of research on mechanistic studies of damage to alpha 1-PI by cigarette smoke and phagocytic cells in vitro, studies emphasizing the importance of elastinolytic activity in the pathogenesis of emphysema in vivo and studies of human lung lavage fluid to detect defects in alpha 1-PI at the molecular and functional levels.


2018 ◽  
Vol 16 ◽  
pp. 205873921878896 ◽  
Author(s):  
Songbo Zhao ◽  
Zhichao Han ◽  
Cheng Ji ◽  
Gangli An ◽  
Huimin Meng ◽  
...  

Multiple myeloma (MM) is a type of cancer characterized by abnormal proliferation of clonal cells; it is the very dangerous and highly prevalent disease. Although significant progress has been made in clinical research, especially with novel drugs such as bortezomib, lenalidomide, and carfilzomib, most of the patients with MM still suffer from often fetal relapses due to drug resistance. In this study, we aimed to develop immune cells that could specifically target and destroy MM cells. Chimeric antigen receptor–modified NK-92 (CAR-NK92) cells have been very effective against B-cell acute lymphoblastic leukemia (B-ALL); as MM shows high expression of CD138, we constructed CD138-directed CAR-NK-92MI cells (CAR-CD138). It 2is reported that there is a small subset of CD138–/CD19+ MM cells showing, to some extent, stem cell qualities. We therefore generated the CD19-directed CAR-NK-92MI cells (CAR-CD19) as well. These two CAR-NK cells showed strong in vitro biological activity in specifically killing target tumor cells. Thus, the concomitant use of these CAR-NK cells may achieve excellent results in vivo.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Lia Danelishvili ◽  
Lmar Babrak ◽  
Sasha J. Rose ◽  
Jamie Everman ◽  
Luiz E. Bermudez

ABSTRACT Inhibition of apoptotic death of macrophages by Mycobacterium tuberculosis represents an important mechanism of virulence that results in pathogen survival both in vitro and in vivo. To identify M. tuberculosis virulence determinants involved in the modulation of apoptosis, we previously screened a transposon bank of mutants in human macrophages, and an M. tuberculosis clone with a nonfunctional Rv3354 gene was identified as incompetent to suppress apoptosis. Here, we show that the Rv3354 gene encodes a protein kinase that is secreted within mononuclear phagocytic cells and is required for M. tuberculosis virulence. The Rv3354 effector targets the metalloprotease (JAMM) domain within subunit 5 of the COP9 signalosome (CSN5), resulting in suppression of apoptosis and in the destabilization of CSN function and regulatory cullin-RING ubiquitin E3 enzymatic activity. Our observation suggests that alteration of the metalloprotease activity of CSN by Rv3354 possibly prevents the ubiquitin-dependent proteolysis of M. tuberculosis-secreted proteins. IMPORTANCE Macrophage protein degradation is regulated by a protein complex called a signalosome. One of the signalosomes associated with activation of ubiquitin and protein labeling for degradation was found to interact with a secreted protein from M. tuberculosis, which binds to the complex and inactivates it. The interference with the ability to inactivate bacterial proteins secreted in the phagocyte cytosol may have crucial importance for bacterial survival within the phagocyte.


Blood ◽  
1984 ◽  
Vol 63 (6) ◽  
pp. 1376-1384 ◽  
Author(s):  
T Yokochi ◽  
M Brice ◽  
PS Rabinovitch ◽  
T Papayannopoulou ◽  
G Stamatoyannopoulos

Two new cell surface antigens specific for the erythroid lineage were defined with cytotoxic IgM monoclonal antibodies (McAb) (EP-1; EP-2) that were produced using BFU-E-derived colonies as immunogens. These two antigens are expressed on in vivo and in vitro derived adult and fetal erythroblasts, but not on erythrocytes. They are not detectable on resting lymphocytes, concanavalin-A (Con-A) activated lymphoblasts, granulocytes, and monocytes or granulocytic cells or macrophages present in peripheral blood or harvested from CFU-GM cultures. Cell line and tissue distributions distinguish McAb EP-1 and EP-2 from all previously described monoclonal antibodies. McAb EP-1 (for erythropoietic antigen-1) inhibits the formation of BFU-E and CFU-E, but not CFU-GM, colonies in complement-dependent cytotoxicity assays. By cell sorting analysis, about 90% of erythroid progenitors (CFU-E, BFU-E) were recovered in the antigen-positive fraction. Seven percent of the cells in this fraction were progenitors (versus 0.1% in the negative fraction). The expression of EP-1 antigen is greatly enhanced in K562 cells, using inducers of hemoglobin synthesis. McAb EP-2 fails to inhibit BFU-E and CFU-E colony formation in complement-dependent cytotoxicity assays. EP-2 antigen is predominantly expressed on in vitro derived immature erythroblasts, and it is weakly expressed on mature erythroblasts. The findings with McAb EP-1 provide evidence that erythroid progenitors (BFU-E and CFU-E) express determinants that fail to be expressed on other progenitor cells and hence appear to be unique to the erythroid lineage. McAb EP-1 and EP-2 are potentially useful for studies of erythroid differentiation and progenitor cell isolation.


Sign in / Sign up

Export Citation Format

Share Document