scholarly journals Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms

Blood ◽  
2010 ◽  
Vol 116 (6) ◽  
pp. 988-992 ◽  
Author(s):  
Stephen T. Oh ◽  
Erin F. Simonds ◽  
Carol Jones ◽  
Matthew B. Hale ◽  
Yury Goltsev ◽  
...  

Abstract Dysregulated Janus kinase–signal transducer and activator of transcription (JAK-STAT) signaling due to activation of tyrosine kinases is a common feature of myeloid malignancies. Here we report the first human disease-related mutations in the adaptor protein LNK, a negative regulator of JAK-STAT signaling, in 2 patients with JAK2 V617F–negative myeloproliferative neoplasms (MPNs). One patient exhibited a 5 base-pair deletion and missense mutation leading to a premature stop codon and loss of the pleckstrin homology (PH) and Src homology 2 (SH2) domains. A second patient had a missense mutation (E208Q) in the PH domain. BaF3-MPL cells transduced with these LNK mutants displayed augmented and sustained thrombopoietin-dependent growth and signaling. Primary samples from MPN patients bearing LNK mutations exhibited aberrant JAK-STAT activation, and cytokine-responsive CD34+ early progenitors were abnormally abundant in both patients. These findings indicate that JAK-STAT activation due to loss of LNK negative feedback regulation is a novel mechanism of MPN pathogenesis.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 315-315
Author(s):  
Stephen T. Oh ◽  
Jacob M. Zahn ◽  
Carol D. Jones ◽  
Bing Zhang ◽  
Mignon L. Loh ◽  
...  

Abstract Abstract 315 Introduction: Dysregulated JAK-STAT signaling in chronic myeloproliferative neoplasms (MPNs) has primarily been attributed to activating mutations in tyrosine kinases. However, JAK-STAT activation can be demonstrated in some patients lacking JAK2 or MPL mutations, suggesting alteration of other regulatory elements in this pathway. One regulator of JAK-STAT signaling is LNK (SH2B3), an adapter protein that contains a proline-rich N-terminal dimerization domain (Pro/DD), a pleckstrin homology (PH) domain (plasma membrane localization), and an SH2 domain. LNK binds to cytokine receptors (e.g. MPL, EPOR) and JAK2 via its SH2 domain, inhibiting downstream STAT activation and providing critical negative feedback regulation. LNK-/- mice exhibit features consistent with an MPN phenotype. We recently reported the first human disease-related LNK mutations in two JAK2 V617F-negative MPN patients (Oh et al, Blood, Aug 12, 2010). One patient with primary myelofibrosis (PMF) exhibited a 5 base-pair (bp) deletion and missense mutation (DEL) leading to a premature stop codon and loss of the PH and SH2 domains. A second patient with essential thrombocythemia (ET) was found to have a missense mutation (E208Q) in the PH domain. Both mutations conferred aberrant JAK-STAT signaling in cell lines and primary patient samples, indicating that loss of LNK negative feedback regulation contributes to MPN pathogenesis. We now report the results of a comprehensive screen of a large cohort of MPN, overlap myelodysplastic syndrome (MDS)/MPN, and post-MDS/MPN acute myeloid leukemia (AML) patients for LNK mutations. Methods: A total of 341 samples were sequenced (Table 1; polycythemia vera (PV)=34, erythrocytosis=7, ET=61, PMF=75, post-PV/ET MF=25, MPN-U=7, chronic myelomonocytic leukemia (CMML)=71, juvenile myelomonocytic leukemia=20, MDS/MPN=8, MDS with fibrosis=2, refractory anemia with ring sideroblasts and thrombocytosis=4, idiopathic hypereosinophilic syndrome/chronic eosinophilic leukemia=4, systemic mastocytosis=4, and post MDS/MPN AML=19). A deep sequencing approach (Illumina multiplexing system) was used to evaluate 84 samples, in which all exons of LNK were sequenced. For the remainder of the samples, direct sequencing was performed on exon 2, the region containing the previously reported DEL and E208Q mutations. Results: After excluding variants previously reported in SNP databases, a total of 11/341 (3.2%) patients were found to have non-synonymous mutations, including 3/61 (4.9%) ET, 3/75 (4.0%) PMF, and 5/71 (7.0%) CMML patients (Table 1). Each of the mutations localized to exon 2 of LNK, implicating this region as a possible mutational hotspot. This included the aforementioned patients with the DEL and E208Q mutations, which were confirmed by deep sequencing. In two other patients, sequencing of DNA from cultured skin fibroblasts DNA indicated that the mutations were germline. For the remaining seven patients, germline analysis is currently ongoing. In one patient with CMML, a 1 bp deletion leading to a frameshift and premature stop codon was identified (Q72fs). This mutation localized to the Pro/DD, likely resulting in a complete loss of LNK function. Interestingly, this patient who is wild type for the JAK2 and RAS genes, also carries a heterozygous CBL mutation (C396Y), suggesting that LNK and CBL mutations may have cooperative effects. Four patients (one with PMF, three with CMML) were found to have a missense mutation (S186I) at a highly conserved residue in the Pro/DD. The previously reported E208Q mutation was also found in one patient with ET and one patient with CMML. None of the 81 patients known to be JAK2 V617F-positive exhibited somatic LNK mutations, suggesting that LNK mutations may provide an alternative basis for JAK-STAT activation in the absence of JAK2 V617F. Conclusion: Missense and deletion mutations of the LNK gene occur at a low frequency in MPNs and MDS/MPNs and segregate predominantly in exon 2. Further analysis of post-MPN AML samples (represented at a low frequency in the current cohort) and other subtypes of acute and chronic myeloid malignancies is warranted to better characterize the disease spectrum of LNK mutations and whether they are mutually exclusive of JAK2 V617F. We are currently investigating whether loss of negative feedback regulation of JAK-STAT signaling is related to haploinsufficiency of LNK or dominant negative effects of the mutant protein. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Abhishek Kumar ◽  
Nagarajan Paramasivam ◽  
Obul Reddy Bandapalli ◽  
Matthias Schlesner ◽  
Tianhui Chen ◽  
...  

Abstract Background The most frequently identified strong cancer predisposition mutations for colorectal cancer (CRC) are those in the mismatch repair (MMR) genes in Lynch syndrome. Laboratory diagnostics include testing tumors for immunohistochemical staining (IHC) of the Lynch syndrome-associated DNA MMR proteins and/or for microsatellite instability (MSI) followed by sequencing or other techniques, such as denaturing high performance liquid chromatography (DHPLC), to identify the mutation. Methods In an ongoing project focusing on finding Mendelian cancer syndromes we applied whole-exome/whole-genome sequencing (WES/WGS) to 19 CRC families. Results Three families were identified with a pathogenic/likely pathogenic germline variant in a MMR gene that had previously tested negative in DHPLC gene variant screening. All families had a history of CRC in several family members across multiple generations. Tumor analysis showed loss of the MMR protein IHC staining corresponding to the mutated genes, as well as MSI. In family A, a structural variant, a duplication of exons 4 to 13, was identified in MLH1. The duplication was predicted to lead to a frameshift at amino acid 520 and a premature stop codon at amino acid 539. In family B, a 1 base pair deletion was found in MLH1, resulting in a frameshift and a stop codon at amino acid 491. In family C, we identified a splice site variant in MSH2, which was predicted to lead loss of a splice donor site. Conclusions We identified altogether three pathogenic/likely pathogenic variants in the MMR genes in three of the 19 sequenced families. The MLH1 variants, a duplication of exons 4 to 13 and a frameshift variant, were novel, based on the InSiGHT and ClinVar databases; the MSH2 splice site variant was reported by a single submitter in ClinVar. As a variant class, duplications have rarely been reported in the MMR gene literature, particularly those covering several exons.


Genome ◽  
2016 ◽  
Vol 59 (7) ◽  
pp. 439-448 ◽  
Author(s):  
Siti W. Mohd-Zin ◽  
Nor-Linda Abdullah ◽  
Aminah Abdullah ◽  
Nicholas D.E. Greene ◽  
Pike-See Cheah ◽  
...  

The EphA4 receptor tyrosine kinase is involved in numerous cell-signalling activities during embryonic development. EphA4 has the ability to bind to both types of ephrin ligands, the ephrinAs and ephrinBs. The C57BL/6J-Epha4rb-2J/GrsrJ strain, denoted Epha4rb-2J/rb-2J, is a spontaneous mouse mutant that arose at The Jackson Laboratory. These mutants exhibited a synchronous hind limb locomotion defect or “hopping gait” phenotype, which is also characteristic of EphA4 null mice. Genetic complementation experiments suggested that Epha4rb-2J corresponds to an allele of EphA4, but details of the genomic defect in this mouse mutant are currently unavailable. We found a single base-pair deletion in exon 9 resulting in a frame shift mutation that subsequently resulted in a premature stop codon. Analysis of the predicted structure of the truncated protein suggests that both the kinase and sterile α motif (SAM) domains are absent. Definitive determination of genotype is needed for experimental studies of mice carrying the Epha4rb-2J allele, and we have also developed a method to ease detection of the mutation through RFLP. Eph-ephrin family members are reportedly expressed as numerous isoforms. Hence, delineation of the specific mutation in EphA4 in this strain is important for further functional studies, such as protein–protein interactions, immunostaining and gene compensatory studies, investigating the mechanism underlying the effects of altered function of Eph family of receptor tyrosine kinases on phenotype.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1766-1766
Author(s):  
Johanna Flach ◽  
Sonja Schindela ◽  
Frank Dicker ◽  
Susanne Schnittger ◽  
Alexander Kohlmann ◽  
...  

Abstract Abstract 1766 Poster Board I-792 Refractory anemia with ring sideroblasts and thrombocytosis (RARS-T) forms a provisional entity within the category of MDS/MPN-U in the 2008 WHO classification. Although the identification of the JAK2V617F mutation was an important first step in distinguishing this entity from other hematological diseases, further genetic characterization is necessary. We performed comprehensive cytogenetic and molecular genetic investigations including targeted analysis of JAK2V617F, TET2, MPLW515 and CBL, markers known to be altered in MPN, as well as genome-wide single nucleotide polymorphism microarray analysis (SNP-A) in 23 RARS-T patients who fulfilled WHO 2008 diagnostic criteria. The JAK2V617F mutation was detectable in 15 out of 19 analyzed patients (78.9%), four of which were homozygous. However, our patients neither carried a MPLW515 mutation nor mutations in exons 8 or 9 of CBL genes. These genes were recently described to be mainly mutated in myeloproliferative neoplasms. In addition, conventional cytogenetic analysis did not reveal any recurrent cytogenetic abnormalities in RARS-T patients. We also performed SNP microarray analysis in a subset of 10 RARS-T patients. Although we did neither observe recurrent chromosomal gains or losses nor recurring regions of UPD, one patient showed a deletion spanning a 1.3 Mb region on the long arm of chromosome 4 (start: 105,497,200 bp from pter; end: 106,825,780 bp from pter). The deleted region contained TET2, a gene recently found to be altered in many subtypes of myeloid malignancies. To further clarify the 4q24 deletion detected by SNP-A analysis we performed fluorescence in situ hybridization (FISH). 20 out of 100 analyzed interphase nuclei and three metaphases showed only one signal for the probe spanning the TET2 gene in this patient. Interphase FISH with the TET2 probe was performed in nine additional cases not analyzed by SNP arrays due to a lack of material, but no additional case showing a deletion was detected. In addition to FISH, we performed TET2 sequencing in 19/23 RARS-T patients. TET2 mutations were detected in 5/19 patients (26%), of which 3/5 also presented the JAK2V617F mutation, whereas the remaining 2/5 did neither show JAK2V617F nor MPL nor CBL mutations. The five patients showed 6 individually different TET2 mutations. Three were nonsense and two missense mutations. One patient displayed a frameshift mutation leading to a premature stop codon. In summary, RARS-T patients demonstrated a high frequency of both JAK2 and TET2 mutations. Together with the less common MPL mutations described by others RARS-T presents a variety of mutations that overlap with the spectrum of mutations seen in MPN and other myeloid malignancies. Thus, a combination of molecular markers including JAK2 and TET2 should be investigated to more precisely describe RARS-T as an independent disease entity. Disclosures Flach: MLL Munich Leukemia Laboratory: Employment. Schindela:MLL Munich Leukemia Laboratory: Employment. Dicker:MLL Munich Leukemia Laboratory: Employment. Schnittger:MLL Munich Leukemia Laboratory: Equity Ownership. Kohlmann:MLL Munich Leukemia Laboratory: Employment. Weiss:MLL Munich Leukemia Laboratory: Employment. Kern:MLL Munich Leukemia Laboratory: Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1437-1437
Author(s):  
Alexey Bersenev ◽  
Chao Wu ◽  
Joanna Balcerek ◽  
Wei Tong

Abstract Abstract 1437 Poster Board I-460 Hematopoietic stem cell (HSC) homeostasis and self-renewal are regulated by intrinsic cytokine signaling pathways. One important signaling axis for HSC is the cell surface receptor, Mpl, and its ligand, thrombopoietin (Tpo). Upon Tpo stimulation, Mpl activates Janus Kinase (JAK2), which in turn triggers a cascade of downstream signal transduction pathways that regulate key aspects of cell development. Mice that lack the inhibitory adaptor protein Lnk harbor a vastly expanded HSC pool with enhanced self-renewal. We previously demonstrated that Lnk controls HSC self-renewal predominantly through the Mpl/JAK2 pathway. Lnk binds directly to phosphorylated tyrosine 813 in JAK2 upon Tpo stimulation. Moreover, Lnk-deficient HSCs display potentiated JAK2 activation. Dysregulation of cytokine receptor signaling pathways frequently lead to hematological malignancies. Abnormal activation of JAK2 by a chromosomal translocation between the transcription factor Tel and JAK2 (Tel/JAK2) was shown to cause atypical Chronic Myelogenous Leukemia (aCML) in human patients. Moreover, the JAK2 V617F mutation has been observed at high frequency in several myeloproliferative diseases (MPDs). The JAK2V617F retains Lnk binding, suggesting that alterations in Lnk could influence MPD development. Indeed, we found that loss of Lnk accelerates and exacerbates oncogenic JAK2-induced MPD in mouse transplant models. Specifically, Lnk deficiency enhanced cytokine signaling, thereby augmenting the ability of oncogenic JAK2 to expand myeloid progenitors. To test whether the interaction between Lnk and JAK2V617F directly constrains MPD development in mice, we transplanted wild-type bone marrow cells expressing the JAK2V617F/Y813F double mutant that does not interact with Lnk (WT;JAK2VF/YF). WT;JAK2VF/YF engrafted mice exhibited increased myeloid expansion when compared to WT;JAK2VF mice, and conferred accelerated polycythemia vera development in secondary transplants. In summary, we identified Lnk as a physiological negative regulator of JAK2 in stem cells that may constrain leukemic transformation conferred by oncogenic JAK2. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 3-3
Author(s):  
Paniz Tavakoli ◽  
Laura N Eadie ◽  
Susan L Heatley ◽  
John B Bruning ◽  
Deborah L White

Introduction TYK2-rearrangements have recently been detected in high-risk acute lymphoblastic leukemia (HR-ALL) cases and are associated with poor outcome. The resultant fusion protein is predominantly driven by Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling. Thus, JAK/TYK2 inhibitors (JAKi) are among the most promising targeted therapeutics against these fusions. This was confirmed in aMYB-TYK2mouse model where the induced aggressive B-ALL was effectively targeted by the novel dual SYK/JAKi, cerdulatinib (cerd) (Tavakoliet al.2020, EHA abstract EP353). Despite the clinical benefit of JAKi in myeloproliferative neoplasms, resistance occurs resulting in relapse. Hence it is necessary to identify potential JAKi-mediated resistance mechanisms inTYK2-rearranged B-ALL patients. This study modeled cerd resistance mechanisms to recapitulate possible clinical scenarios. Methods Ba/F3 pro-B cells were retrovirally transduced with a plasmid construct containing theMYB-TYK2fusion gene isolated from an ALL patient. A cerd resistant line (cerdres) was generated by exposure of Ba/F3-MYB-TYK2cells to increasing concentrations of cerd (up to 3µM; clinically achievable plasma level is 1-2µM) over a period of 151 d. IC50 was determined via CellTiter-Glo proliferation assay. Downstream signaling was determined by phospho-flow analysis. Sanger sequencing was performed over theMYB-TYK2fusion gene to identify emergence of mutations. Site directed mutagenesis of theMYB-TYK2fusion construct was used to model an identified mutationin vitro. Computational modeling of theTYK2mutation and cerd docking was performed via ICM-Pro (Molsoft L.C.C.). The effect of long-term exposure to cerd on activation of JAK family kinases was investigated via western blot. A cerd resensitized line (cerdresen) was generated by culturing cerdres Ba/F3-MYB-TYK2cells in cerd free media for 5 weeks. Results Long-term exposure of Ba/F3-MYB-TYK2cells to cerd resulted in resistance with an 8.7-fold increase in IC50 compared to vehicle control cells (DMSO exposed) (IC50=6508 vs 739nM,p=0.001; Figure 1A). A novel mutation in the kinase domain ofTYK2(p.R987Q, c.3338G>A) was identified in ~50% of cerdres Ba/F3-MYB-TYK2cells. However,de novointroduction ofMYB-TYK2p.R987Q into parental Ba/F3 cells indicated that resistance to cerd was not due to the mutation alone, as these cells displayed no significant decreased sensitivity to cerd compared with control cells (IC50=1200 vs 739nM,p>0.05; Figure A). Computational modeling indicated the binding orientation of cerd to the mutated kinase domain was reversed 180º resulting in less favourable binding (TYK2p.R987Q vsTYK2, binding score= -18.6 vs -23.4). Phosphoflow analysis demonstrated increased JAK/STAT signalling in cerdres Ba/F3-MYB-TYK2compared with control cells (MFI= 35.2 vs 16.5,p=0.008) that persisted despite TYK2 kinase inhibition (MFI= 29.8 vs 2.3,p=0.004; Figure B). Expression of p.R987Q mutation did not result in increased pSTAT5 levels in Ba/F3-MYB-TYK2p.R987Q. Given that JAK2 heterodimerisation with other JAK proteins can lead to JAK/STAT activation and drug persistence (Meyeret al.2017), other kinases may facilitate phosphorylation of TYK2 in cerdres Ba/F3-MYB-TYK2.Western blot analysis confirmed a significant increase in TYK2 phosphorylation (p=0.01) and JAK1 expression (p=0.0008) in cerdres vs control Ba/F3-MYB-TYK2cells (Figure C). Cerd withdrawal resulted in potential resensitization of cerdres Ba/F3-MYB-TYK2to cerd with an associated decrease in IC50 (cerdres vs cerdresen, 6508 vs 2603nM,p=0.0003). However, IC50 levels did not decrease to levels observed in control cells (cerdresen vs control, 2603 vs 739nM, p=0.01), potentially due to increased activation of STAT5 from cerd-induced accumulation of pTYK2 (Tvorogovet al. 2018). Conclusions In vitromodeling suggests that persistent JAK/STAT activation is due to changes in TYK2 expression. Possible heterodimer formation with JAK1 in the setting of JAKi -cerd- exposure allows cells to become resistant. Consequently, the novel evidence of resistance mechanisms to JAKi, provide a rationale for the use of other small molecule inhibitors (e.g. HSP90i and HDACi), to potentially retain TYK2 degradation ability in resistant cells. This targeted approach may contribute to the treatment of patient withTYK2-rearranged ALL. Disclosures White: Bristol-Myers Squibb:Honoraria, Research Funding;Amgen:Honoraria.


2002 ◽  
Vol 102 (5) ◽  
pp. 501-506 ◽  
Author(s):  
Yumiko YASUI ◽  
Shikibu MURANAKA ◽  
Tsuyoshi TAHARA ◽  
Ryo SHIMIZU ◽  
Sonoko WATANABE ◽  
...  

We investigated the molecular defect of the ferrochelatase gene in a Japanese patient with erythropoietic protoporphyria (EPP), and identified a novel 16 base pair (574-589) deletion within exon 5. This deletion resulted in a frame-shift mutation and created a premature stop codon at amino acid position 198. The same molecular defect was also identified in his mother and a brother who had symptomatic EPP, but not in his father who was asymptomatic. The subjects with EPP were homozygous for the low expression haplotype, while his father was heterozygous for this haplotype. These results indicate that the combination of a 16 base pair deletion and low expression of the wild-type allelic variant is responsible for EPP in this pedigree.


2003 ◽  
Vol 82 (12) ◽  
pp. 1008-1012 ◽  
Author(s):  
Y. Wang ◽  
H. Zhao ◽  
X. Zhang ◽  
H. Feng

Rieger syndrome is one of the most serious causes of tooth agenesis. Mutations in the PITX2, FOXC1, and PAX6 genes have been associated with Rieger syndrome. We have studied a three-generation Chinese family affected with Rieger syndrome and showing prominent dental abnormalities. Mutational screening and sequence analysis of the PITX2 gene revealed a previously unidentified four-base-pair deletion of nucleotides 717-720 in exon 5 in all affected members. The mutation causes a frame shift after Thr44, the 7th amino acid of the homeo-domain, and introduces a premature stop codon in the gene sequence. This deletion is the first unquestionable loss-of-function mutation, deleting all the functionally important parts of the protein. Our novel discovery indicates that the oligodontia and other phenotypes of Rieger syndrome observed in this family are due to this PITX2 mutation, and these data further support the critical role of PIXT2 in tooth morphogenesis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Daniele Cattaneo ◽  
Alessandra Iurlo

BCR-ABL1-negative myeloproliferative neoplasms are burdened by a reduced life expectancy mostly due to an increased risk of thrombo-hemorrhagic events, fibrotic progression/leukemic evolution, and infectious complications. In these clonal myeloid malignancies, JAK2V617F is the main driver mutation, leading to an aberrant activation of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway. Therefore, its inhibition represents an attractive therapeutic strategy for these disorders. Several JAK inhibitors have entered clinical trials, including ruxolitinib, the first JAK1/2 inhibitor to become commercially available for the treatment of myelofibrosis and polycythemia vera. Due to interference with the JAK-STAT pathway, JAK inhibitors affect several components of the innate and adaptive immune systems such as dendritic cells, natural killer cells, T helper cells, and regulatory T cells. Therefore, even though the clinical use of these drugs in MPN patients has led to a dramatic improvement of symptoms control, organ involvement, and quality of life, JAK inhibitors–related loss of function in JAK-STAT signaling pathway can be a cause of different adverse events, including those related to a condition of immune suppression or deficiency. This review article will provide a comprehensive overview of the current knowledge on JAK inhibitors’ effects on immune cells as well as their clinical consequences, particularly with regards to infectious complications.


2020 ◽  
Vol 11 ◽  
Author(s):  
Minjing Zou ◽  
Ayla Guven ◽  
Huda A. BinEssa ◽  
Roua A. Al-Rijjal ◽  
Brian F. Meyer ◽  
...  

ContextVitamin D-dependent rickets type 1A (VDDR1A) is a rare autosomal recessively inherited disorder due to loss-of-function mutations in the CYP27B1 gene. CYP27B1 encodes an enzyme of 25-hydroxyvitamin D-1α-hydroxylase for converting inactive 25-OHD to biologically active 1,25-(OH)2D.ObjectiveTo identify underlying genetic defects in patients with VDDR1A.MethodsTwelve patients from 7 Turkish and 2 Saudi families were investigated. The coding exons and intron-exon boundaries of the CYP27B1 gene were amplified by Polymerase Chain Reaction (PCR) from peripheral lymphocyte DNA. PCR products were directly sequenced. The consequences of c.590G > A mutation were analyzed by in silico and functional analysis.ResultsCYP27B1 mutations were identified in all the patients. Two novel mutations were identified in two separate families: c.171delG (family 7) and c.398_400dupAAT (family 8). The intra-exon deletion of c.171delG resulted in a frameshift and premature stop codon 20 amino acids downstream from the mutation (p.L58Cfs∗20). The intra-exon duplication of c.398_400dupAAT generated a premature stop codon at the mutation site (p.W134∗). A missense c.590G > A (p.G197D) mutation was found in a patient from family 4 and caused a defect in pre-mRNA splicing. As a result, two populations of transcripts were detected: the majority of them with intron 3 retention (83%), and the minority (17%) being properly spliced transcripts with about 16% of wild-type enzymatic activity. The remaining nine patients from six families carried a previously reported c.1319_1325dupCCCACCC (F443Pfs∗24) mutation. Clinically, all the patients need continued calcitriol treatment, which was consistent with inactivation of 25-hydroxy vitamin D1α-hydroxylase activity.ConclusionTwo novel frameshift CYP27B1 mutations were identified and predicted to inactivate 25-hydroxyvitamin D-1α-hydroxylase. The loss of enzymatic activity by c.590G > A missense mutation was mainly caused by aberrant pre-mRNA splicing.


Sign in / Sign up

Export Citation Format

Share Document