scholarly journals Improved regulatory T-cell activity in patients with chronic immune thrombocytopenia treated with thrombopoietic agents

Blood ◽  
2010 ◽  
Vol 116 (22) ◽  
pp. 4639-4645 ◽  
Author(s):  
Weili Bao ◽  
James B. Bussel ◽  
Susanne Heck ◽  
Wu He ◽  
Marissa Karpoff ◽  
...  

Immune thrombocytopenia (ITP) is an autoantibody-mediated bleeding disorder with both accelerated platelet destruction and impaired platelet production. We and others have described impaired regulatory CD4+CD25hi T cells (Treg) numbers and/or suppressive function in ITP patients. Clinical trials using thrombopoietic agents to stimulate platelet production have shown favorable outcomes in ITP patients, but information on the immunologic responses of treated patients are lacking. We studied the immunologic profile of chronic ITP patients before (n = 10) and during treatment with thrombopoietin receptor (TPO-R) agonists (n = 9). Treg activity, as measured by suppression of proliferation of autologous CD4+ CD25− cells, was improved in patients on treatment (P < .05), and the improvement correlated with reduction in interleukin-2–producing CD4+ cells, consistent with dampening of immune responses. There was a concomitant increase in total circulating transforming growth factor-β1 (TGF-β1) levels (P = .002) in patients on treatment, and the levels of TGF-β1 correlated with the degree of improvement in platelet counts (r = .8, P = .0002). This suggests that platelets in patients on TPO-R treatment may play a role in improving Treg function, either directly or indirectly by enhanced release of TGF-β1 as a result of greater platelet turnover. In conclusion, our findings suggest that thrombopoietic agents in patients with ITP have profound effects to restore immune tolerance.

2018 ◽  
Vol 9 (10) ◽  
pp. 309-317 ◽  
Author(s):  
David Gómez-Almaguer

Immune thrombocytopenia (ITP) is a bleeding disorder caused by a decrease in platelet count resulting from increased destruction and insufficient production of platelets. Although impaired regulatory T-lymphocyte activity plays a critical role in platelet destruction, many other immunologic abnormalities are also likely to be involved. Importantly, patients with ITP appear to have defects in a thrombopoietin-mediated physiological mechanism that compensates for a decrease in platelet count by increasing platelet production. Thus, simultaneous treatment of multiple pathogenic pathways involved in ITP could potentially result in synergistic efficacy. While conventional treatments for ITP suppress or modulate the immune system to reduce platelet destruction, a unique class of ITP therapy, namely thrombopoietin receptor agonists (TPO-RAs), improves platelet production by activating the thrombopoietin pathway. As hypothesized, preliminary studies show that combinations of eltrombopag, an oral TPO-RA, with conventional treatments improve outcomes in both newly diagnosed and refractory patients. In this review, the clinical experience with eltrombopag-based combinations in patients with ITP is summarized and the implications of the available data are discussed.


2021 ◽  
Vol 22 (6) ◽  
pp. 2952
Author(s):  
Tzu-Yu Hou ◽  
Shi-Bei Wu ◽  
Hui-Chuan Kau ◽  
Chieh-Chih Tsai

Transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from orbital fibroblasts is known to dominate tissue remodeling and fibrosis in Graves’ ophthalmopathy (GO). However, the signaling pathways through which TGF-β1 activates Graves’ orbital fibroblasts remain unclear. This study investigated the role of the mitogen-activated protein kinase (MAPK) pathway in TGF-β1-induced myofibroblast transdifferentiation in human Graves’ orbital fibroblasts. The MAPK pathway was assessed by measuring the phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular-signal-regulated kinase (ERK) by Western blots. The expression of connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), and fibronectin representing fibrogenesis was estimated. The activities of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) responsible for extracellular matrix (ECM) metabolism were analyzed. Specific pharmacologic kinase inhibitors were used to confirm the involvement of the MAPK pathway. After treatment with TGF-β1, the phosphorylation levels of p38 and JNK, but not ERK, were increased. CTGF, α-SMA, and fibronectin, as well as TIMP-1 and TIMP-3, were upregulated, whereas the activities of MMP-2/-9 were inhibited. The effects of TGF-β1 on the expression of these factors were eliminated by p38 and JNK inhibitors. The results suggested that TGF-β1 could induce myofibroblast transdifferentiation in human Graves’ orbital fibroblasts through the p38 and JNK pathways.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yueyi Yang ◽  
Wenjing Liu ◽  
JieYa Wei ◽  
Yujia Cui ◽  
Demao Zhang ◽  
...  

AbstractGap junction (GJ) has been indicated to have an intimate correlation with adhesion junction. However, the direct interaction between them partially remains elusive. In the current study, we aimed to elucidate the role of N-cadherin, one of the core components in adhesion junction, in mediating connexin 43, one of the functional constituents in gap junction, via transforming growth factor-β1(TGF-β1) induction in osteoblasts. We first elucidated the expressions of N-cadherin induced by TGF-β1 and also confirmed the upregulation of Cx43, and the enhancement of functional gap junctional intercellular communication (GJIC) triggered by TGF-β1 in both primary osteoblasts and MC3T3 cell line. Colocalization analysis and Co-IP experimentation showed that N-cadherin interacts with Cx43 at the site of cell–cell contact. Knockdown of N-cadherin by siRNA interference decreased the Cx43 expression and abolished the promoting effect of TGF-β1 on Cx43. Functional GJICs in living primary osteoblasts and MC3T3 cell line were also reduced. TGF-β1-induced increase in N-cadherin and Cx43 was via Smad3 activation, whereas knockdown of Smad3 signaling by using siRNA decreased the expressions of both N-cadherin and Cx43. Overall, these data indicate the direct interactions between N-cadherin and Cx43, and reveal the intervention of adhesion junction in functional gap junction in living osteoblasts.


1998 ◽  
Vol 275 (4) ◽  
pp. L637-L644 ◽  
Author(s):  
Yu-Chen Lee ◽  
D. Eugene Rannels

Type II pulmonary epithelial cells respond to anthracite coal dust PSOC 867 with increased synthesis of extracellular matrix (ECM) components. Alveolar macrophages modulate this response by pathways that may involve soluble mediators, including tumor necrosis factor-α (TNF-α) or transforming growth factor-β1 (TGF-β1). The effects of TNF-α (10 ng/ml) and/or TGF-β1 (2 ng/ml) were thus investigated in dust-exposed primary type II cell cultures. In control day 1 or day 3 cultures, TNF-α and/or TGF-β1 had little or no effect on the synthesis of type II cellular proteins, independent of whether the cells were exposed to dust. With PSOC 867 exposure, where ECM protein synthesis is elevated, TNF-α and TGF-β1 further increased both the absolute and relative rates of ECM synthesis on day 3 but had little effect on day 1. Each mediator increased expression of fibronectin mRNA, as well as of ECM fibronectin content, in a manner qualitatively similar to their effects on synthesis. Thus TNF-α and TGF-β1 modulate both ECM synthesis and fibronectin content in coal dust-exposed type II cell cultures.


2001 ◽  
Vol 21 (21) ◽  
pp. 7218-7230 ◽  
Author(s):  
Francesc Viñals ◽  
Jacques Pouysségur

ABSTRACT Mouse capillary endothelial cells (1G11 cell line) embedded in type I collagen gels undergo in vitro angiogenesis. Cells rapidly reorganize and form capillary-like structures when stimulated with serum. Transforming growth factor β1 (TGF-β1) alone can substitute for serum and induce cell survival and tubular network formation. This TGF-β1-mediated angiogenic activity depends on phosphatidylinositol 3-kinase (PI3K) and p42/p44 mitogen-activated protein kinase (MAPK) signaling. We showed that specific inhibitors of either pathway (wortmannin, LY-294002, and PD-98059) all suppressed TGF-β1-induced angiogenesis mainly by compromising cell survival. We established that TGF-β1 stimulated the expression of TGF-α mRNA and protein, the tyrosine phosphorylation of a 170-kDa membrane protein representing the epidermal growth factor (EGF) receptor, and the delayed activation of PI3K/Akt and p42/p44 MAPK. Moreover, we showed that all these TGF-β1-mediated signaling events, including tubular network formation, were suppressed by incubating TGF-β1-stimulated endothelial cells with a soluble form of an EGF receptor (ErbB-1) or tyrphostin AG1478, a specific blocker of EGF receptor tyrosine kinase. Finally, addition of TGF-α alone poorly stimulated angiogenesis; however, by reducing cell death, it strongly potentiated the action of TGF-β1. We therefore propose that TGF-β1 promotes angiogenesis at least in part via the autocrine secretion of TGF-α, a cell survival growth factor, activating PI3K/Akt and p42/p44 MAPK.


2012 ◽  
Vol 287 (27) ◽  
pp. 23184-23195 ◽  
Author(s):  
Gang Chen ◽  
Paritosh Ghosh ◽  
Thomas O'Farrell ◽  
Rachel Munk ◽  
Louis J. Rezanka ◽  
...  

2007 ◽  
Vol 293 (3) ◽  
pp. F885-F894 ◽  
Author(s):  
Amie Traylor ◽  
Thomas Hock ◽  
Nathalie Hill-Kapturczak

Excess transforming growth factor-β1 (TGF-β1) in the kidney leads to increased cell proliferation and deposition of extracellular matrix, resulting in progressive kidney fibrosis. TGF-β1, however, stabilizes and attenuates tissue injury through the activation of cytoprotective proteins, including heme oxygenase-1 (HO-1). HO-1 catabolizes pro-oxidant heme into substances with anti-oxidant, anti-apoptotic, anti-fibrogenic, vasodilatory and immune modulatory properties. Little is known regarding the molecular regulation of human HO-1 induction by TGF-β1 except that it is dependent on de novo RNA synthesis and requires a group of structurally related proteins called Smads. It is not known whether other DNA binding proteins are required to initiate transcription of HO-1 and, furthermore, the promoter region(s) involved in TGF-β1-mediated induction of HO-1 has not been identified. The purpose of this study was to further delineate the molecular regulation of HO-1 by TGF-β1 in human renal proximal tubular cells. Actinomycin D and nuclear run-on studies demonstrate that TGF-β1 augments HO-1 expression by increased gene transcription and does not involve increased mRNA stability. Using transient transfection, mithramycin A, small interfering RNA, electrophoretic mobility shift assays, and decoy oligonucleotide experiments, a TGF-β1-responsive region is identified between 9.1 and 9.4 kb of the human HO-1 promoter. This ∼280-bp TGF-β1-responsive region contains a putative Smad binding element and specificity protein 1 binding sites, both of which are required for human HO-1 induction by TGF-β1.


Sign in / Sign up

Export Citation Format

Share Document