scholarly journals Development of an IL-15–autocrine CD8 T-cell leukemia in IL-15–transgenic mice requires the cis expression of IL-15Rα

Blood ◽  
2011 ◽  
Vol 117 (15) ◽  
pp. 4032-4040 ◽  
Author(s):  
Noriko Sato ◽  
Helen Sabzevari ◽  
Song Fu ◽  
Wei Ju ◽  
Michael N. Petrus ◽  
...  

AbstractIL-15 has growth-promoting effects on select lymphoid subsets, including natural killer (NK) cells, NK T cells, intraepithelial lymphocytes (IELs), CD8 T cells, and γδ-T cells. Constitutive expression of murine IL-15 in IL-15–transgenic mice was reported to cause T-NK leukemia. We investigated whether IL-15 expression is sufficient for leukemic transformation using a human IL-15–transgenic (IL-15Tg) mouse model. We noted that 100% of the mice observed over a 2-year period (n > 150) developed fatal expansions of CD8 T cells with NK markers, and determined that these cells expressed IL-15 receptor alpha (IL-15Rα). The expression of IL-15Rα on CD8 T cells appears to be required for uncontrolled aggressive lymphoproliferation, because none of the IL-15Rα−/−–IL-15Tg mice that we followed for more than 2 years developed the fatal disease despite controlled expansion of CD8 T cells. In addition, in contrast to IL-15Tg mice, in which leukemia-like CD8 T cells expressed IL-15Rα persistently, acutely activated normal CD8 T cells only transiently expressed IL-15Rα. Inhibition of DNA methylation enabled sustained IL-15Rα expression induced by activation. We present a scenario for IL-15Tg mice in which CD8 T cells that acquire constitutive persistent IL-15Rα expression are at a selective advantage and become founder cells, outgrow other lymphocytes, and lead to the establishment of a leukemia-like condition.

1997 ◽  
Vol 42 (1) ◽  
pp. 225-232 ◽  
Author(s):  
Tsutao Takeshita ◽  
Yoshinori Fukui ◽  
Ken Yamamoto ◽  
Kazuaki Yamane ◽  
Takeshi Inamitsu ◽  
...  

Blood ◽  
1997 ◽  
Vol 89 (1) ◽  
pp. 108-118
Author(s):  
I.N. Hampson ◽  
L. Hampson ◽  
M. Pinkoski ◽  
M. Cross ◽  
C.M. Heyworth ◽  
...  

We have identified a gene that has a high level of mRNA expression in undifferentiated, multipotential hematopoietic cells (FDCP-Mix) and that downregulates both transcript and protein, as these cells are induced to differentiate into mature myeloid cells. Sequence analysis of this gene has identified it as a serine protease inhibitor EB22/3 (serpin 2A). Constitutive expression of serpin 2A in FDCP-Mix cells was associated with an increase in the clonogenic potential of the cells and with a delay in the appearance of fully mature cells in cultures undergoing granulocyte macrophage differentiation when compared with control cells. Serpin 2A was also found to be expressed in bone marrow-derived bipotent granulocyte macrophage progenitor cells (GM-colony forming cell [CFC]), but not in erythrocyte progenitor cells from day 15 fetal liver. Expression of serpin 2A also showed a marked up regulation during the activation of cytotoxic suppressor CD8+ T cells, with a clear lag between the appearance of transcript and detection of protein.


1994 ◽  
Vol 14 (2) ◽  
pp. 1084-1094
Author(s):  
Z Hanna ◽  
C Simard ◽  
A Laperrière ◽  
P Jolicoeur

The CD4 protein plays a critical role in the development and function of the immune system. To gain more insight into the mechanism of expression of the human CD4 gene, we cloned 42.2 kbp of genomic sequences comprising the CD4 gene and its surrounding sequences. Studies with transgenic mice revealed that a 12.6-kbp fragment of the human CD4 gene (comprising 2.6 kbp of 5' sequences upstream of the transcription initiation site, the first two exons and introns, and part of exon 3) contains the sequences required to support the appropriate expression in murine mature CD4+ CD8- T cells and macrophages but not in immature double-positive CD4+ CD8+ T cells. Expression in CD4+ CD8+ T cells was found to require additional regulatory elements present in a T-cell enhancer fragment recently identified for the murine CD4 gene (S. Sawada and D. R. Littman, Mol. Cell. Biol. 11:5506-5515, 1991). These results suggest that expression of CD4 in mature and immature T-cell subsets may be controlled by distinct and independent regulatory elements. Alternatively, specific regulatory elements may control the expression of CD4 at different levels in mature and immature T-cell subsets. Our data also indicate that mouse macrophages contain the regulatory factors necessary to transcribe the human CD4 gene.


2002 ◽  
Vol 168 (5) ◽  
pp. 2111-2117 ◽  
Author(s):  
Shigeo Koido ◽  
Yasuhiro Tanaka ◽  
Dongshu Chen ◽  
Donald Kufe ◽  
Jianlin Gong

2002 ◽  
Vol 196 (10) ◽  
pp. 1355-1361 ◽  
Author(s):  
Sandra M. Hayes ◽  
Karen Laky ◽  
Dalal El-Khoury ◽  
Dietmar J. Kappes ◽  
B.J. Fowlkes ◽  
...  

The T cell antigen receptor complexes expressed on αβ and γδ T cells differ not only in their respective clonotypic heterodimers but also in the subunit composition of their CD3 complexes. The γδ T cell receptors (TCRs) expressed on ex vivo γδ T cells lack CD3δ, whereas αβ TCRs contain CD3δ. While this result correlates with the phenotype of CD3δ−/− mice, in which γδ T cell development is unaffected, it is inconsistent with the results of previous studies reporting that CD3δ is a component of the γδ TCR. Since earlier studies examined the subunit composition of γδ TCRs expressed on activated and expanded peripheral γδ T cells or γδ TCR+ intestinal intraepithelial lymphocytes, we hypothesized that activation and expansion may lead to changes in the CD3 subunit composition of the γδ TCR. Here, we report that activation and expansion do in fact result in the inclusion of a protein, comparable in mass and mobility to CD3δ, in the γδ TCR. Further analyses revealed that this protein is not CD3δ, but instead is a differentially glycosylated form of CD3γ. These results provide further evidence for a major difference in the subunit composition of αβ- and γδ TCR complexes and raise the possibility that modification of CD3γ may have important functional consequences in activated γδ T cells.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Guillaume Carissimo ◽  
Weili Xu ◽  
Immanuel Kwok ◽  
Mohammad Yazid Abdad ◽  
Yi-Hao Chan ◽  
...  

Abstract SARS-CoV-2 is the novel coronavirus responsible for the current COVID-19 pandemic. Severe complications are observed only in a small proportion of infected patients but the cellular mechanisms underlying this progression are still unknown. Comprehensive flow cytometry of whole blood samples from 54 COVID-19 patients reveals a dramatic increase in the number of immature neutrophils. This increase strongly correlates with disease severity and is associated with elevated IL-6 and IP-10 levels, two key players in the cytokine storm. The most pronounced decrease in cell counts is observed for CD8 T-cells and VD2 γδ T-cells, which both exhibit increased differentiation and activation. ROC analysis reveals that the count ratio of immature neutrophils to VD2 (or CD8) T-cells predicts pneumonia onset (0.9071) as well as hypoxia onset (0.8908) with high sensitivity and specificity. It would thus be a useful prognostic marker for preventive patient management and improved healthcare resource management.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3944-3944
Author(s):  
Bruno Paiva ◽  
Maria Victoria Mateos ◽  
Lucía López-Corral ◽  
María-Belén Vidriales ◽  
Miguel T. Hernandez ◽  
...  

Abstract Abstract 3944 Lenalidomide is an immunomodulatory agent that enhances T and NK cell activation, being this consideration as a major player in its anti-myeloma effect. However, in MM lenalidomide is usually combined with the immunosuppressant dexamethasone, which has raised questions regarding a potential abrogation of this immunomodulatory effect. In fact, this may be a dilemma upon treating early stage MM patients with lenalidomide +/− dexamethasone. Moreover, our current knowledge of the immune system in SMM is limited. Herein we evaluated by multiparameter flow cytometry (MFC) immunophenotyping peripheral blood (PB) T and NK cells from high-risk SMM patients (N=33), treated according to the QUIREDEX trial (NCT 00480363): an induction phase of 9 four-week cycles of LenDex followed by maintenance with lenalidomide until disease progression. To evaluate the immune status of T and NK cells of SMM patients, we compared them at baseline vs healthy adults (HA) aged over 60 years (N=10). To assess the effect of LenDex on T and NK cells of SMM patients, we compared baseline samples vs those studied after 3 and 9 cycles of LenDex. To address the question whether dexamethasone antagonizes the immunomodulatory properties of lenalidomide, we compared in 11 of the 33 patients, the PB T and NK cells at the end of induction (9th cycle of LenDex) vs during maintenance (lenalidomide alone and at least 3 months after dexamethasone discontinuation). The percentage of PB T cells in high-risk SMM patients at baseline was increased when compared to HA (23% vs 17%; P=.02), mainly due to expansion of CD8 T cells (P=.03). Of note, γδ T cells were also increased in SMM (0.8% vs 0.3%; P=.003). In turn, no differences (P>.05) were noted for both the CD56dim and CD56bright NK cell compartments. However, when a more detailed immunophenotypic characterization was carried out, CD4 and/or CD8 T cells from SMM patients showed decreased expression of activation markers (CD25, P≤.04; CD54, P<.001 and CD154, P=.002), as well as decreased production of the Th1 related cytokines (IFNγ, P=.03; TNFα, P≤.003; and IL-2, P=.02). We then investigated the effect of LenDex treatment. After 3 and 9 cycles of LenDex both CD4 and/or CD8 T cells showed up-regulation of Th1related chemokines (CCR5; p<.001) and cytokine production (IFNγ, P=.03; TNFα, P=.03 and IL-2, P=.02), as well as increased expression of activation markers (CD69, P≤.005; CD25, P<.001; CD28, P≤.04; CD54, P<.001 and HLA-DR, P<.001). Similarly, CD56dim and CD56bright NK cells showed up-regulation of HLA-DR (P<.001), the antibody-dependent cell-mediated cytotoxicity associated receptor CD16 (p≤.005), and the adhesion molecules CD11a (p≤.001) and CD11b (p≤.005). Concerning cell cycle analysis, the percentage of cells in S-phase was significantly increased from baseline vs. 3 vs. 9 cycles of LenDex for T CD4 (0.04% vs 0.13% vs 0.13%; p<.001), CD8 (0.05% vs 0.13% vs 0.18%; p<.001) and NK cells (0.07% vs 0.16% vs 0.15%; p<.001). Interestingly, an unsupervised cluster analysis of the overall immunophenotypic expression profile obtained after 9 cycles of LenDex was able to discriminate two groups of patients with different activation profiles particularly on T CD8 cells, with differences (P<.05) in both their percentage in PB and expression of activation, Th1 and maturation markers. Patients displaying a higher activation profile showed a trend towards increased depth of response after 9 cycles of LenDex (sCR+CR: 31% vs 15%; p=.229), as well as time-to progression (TTP) to symptomatic MM (TTP at 2-years: 100% vs 79%; P=.177). Finally, we explored whether the immunomodulatory properties of lenalidomide could be increased when dexamethasone was removed for the maintenance phase. Regarding T and NK cell distribution, only an increase in the percentage of CD4 T cells was found (9% vs. 12%, P=.04), whereas no differences (P>.05) were noted regarding the immunophenotypic expression profile of T and NK cells studied. In summary, we show that in high-risk SMM patients at baseline CD8 and γδ T cells are increased but overall T cells show an impaired activation profile. Treatment with LenDex induces an activation and proliferation of T and NK cells which may contribute to disease control. Finally, our results do not show an inhibition of the immunomodulatory effects of lenalidomide by the concomitant use of dexamethasone. Disclosures: Paiva: Celgene: Honoraria; Janssen: Honoraria. Off Label Use: lenalidomide is not approved for smoldering myeloma. Mateos:Janssen: Honoraria; Celgene: Honoraria. Rosiñol:Janssen: Honoraria; Celgene: Honoraria. Lahuerta:Janssen: Honoraria; Celgene: Honoraria. Blade:Janssen: Honoraria; Celgene: Honoraria. San Miguel:Janssen-Cilag: Honoraria; Celgene: Honoraria.


2014 ◽  
Vol 14 (2) ◽  
Author(s):  
Yu-Yan Tang ◽  
Zheng-Hao Tang ◽  
Yi Zhang ◽  
Meng Zhuo ◽  
Guo-Qing Zang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document