scholarly journals Selective inhibition of EZH2 and EZH1 enzymatic activity by a small molecule suppresses MLL-rearranged leukemia

Blood ◽  
2015 ◽  
Vol 125 (2) ◽  
pp. 346-357 ◽  
Author(s):  
Bowen Xu ◽  
Doan M. On ◽  
Anqi Ma ◽  
Trevor Parton ◽  
Kyle D. Konze ◽  
...  

Key Points We characterize active vs inactive analog compounds suitable for inhibition of both PRC2-EZH2 and PRC2-EZH1 ex vivo and in vivo. This study is the first to show oral delivery of an EZH2 and EZH1 dual inhibitor as promising therapeutics for MLL-rearranged leukemia.

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1335.2-1335
Author(s):  
T. Seo ◽  
V. Deshmukh ◽  
Y. Yazici

Background:Meniscal injuries, associated with pain, stiffness, and localized swelling, are the most common pathology of the knee with a prevalence of 61 per 100,000.1Meniscal damage is a frequent finding on MRI images of knee osteoarthritis (OA)2; while a meniscal tear can lead to knee OA, knee OA can also lead to a spontaneous meniscal tear.3Efforts to repair meniscal damage have been largely unsuccessful and do not prevent the progression of degenerative changes that lead to knee OA.4The Wnt signaling pathway has been shown to be regulated during meniscal development,5,6suggesting that manipulation of this pathway may influence the regenerative capacity of the meniscus. Lorecivivint (LOR; SM04690) is an intra-articular (IA), small-molecule CLK/DYRK1A inhibitor that modulates the Wnt pathway.Objectives:LOR was evaluated in preclinical studies to determine its protective and anabolic effects in ex vivo explants and in a rat model of chemically induced inflammatory meniscus degeneration.Methods:Effects of LOR (30 nM) on expression of matrix metalloproteinases (MMPs) in cultured rat menisci treated with IL-1B were measured by qPCR. In vivo, LOR activity was evaluated in a rat model of monosodium iodoacetate (MIA) injection-induced inflammatory meniscus degeneration. A single IA injection of MIA was immediately followed by a single IA injection of LOR (0.3 ug) or vehicle. Knees were harvested on Days 1, 4, and 11 and menisci were isolated. Anti-inflammatory effects were evaluated by measuringTNFAandIL6expression by qPCR. Meniscus protection was evaluated by qPCR for MMPs and aggrecanase and anabolic effects by qPCR for collagens.Results:In ex vivo meniscal explants, LOR inhibited expression ofMMP1,MMP3, andMMP13compared to DMSO (P<0.01). In vivo, LOR significantly decreased expression of these MMPs and aggrecanase (P<0.05) compared to vehicle in the rat model of inflammatory meniscus degeneration at Day 4 after MIA injection. In addition, LOR reduced expression of inflammatory cytokinesTNFAandIL6at Day 4 compared to vehicle. Finally, LOR increased expression of collagen types I, II, and III at Day 11 after MIA injection.Conclusion:LOR exhibited protective effects in the meniscus ex vivo and in vivo by reducing the expression of catabolic enzymes compared to control. Anti-inflammatory effects of LOR were demonstrated by inhibition of inflammatory cytokine expression. Compared to vehicle, LOR increased expression of collagens in vivo, indicating potential meniscal anabolic effects. These data support further investigation of LOR as a potential disease-modifying therapy for meniscal injuries.References:[1]Logerstedt D and Snyder-Mackler L.J Orthop Sports Phys Ther. 2010[2]Englund M, et al.Rheum Dis Clin North Am. 2009[3]Englund M, et al.Radiol Clin North Am. 2009[4]von Lewinski, et al.Knee Surg Sports Traumatol Arthrosc. 2007[5]Pazin DE, et al.ORS 2012 Annual Meeting. Paper No. 0221[6]Pazin DE, et al.Dev Dyn. 2012Disclosure of Interests:Tim Seo Shareholder of: Samumed, LLC, Employee of: Samumed, LLC, Vishal Deshmukh Shareholder of: Samumed, LLC, Employee of: Samumed, LLC, Yusuf Yazici Shareholder of: Samumed, LLC, Grant/research support from: Bristol-Myers Squibb, Celgene, and Genentech, Consultant of: Celgene and Sanofi, Employee of: Samumed, LLC


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2920
Author(s):  
Ameeduzzafar Zafar ◽  
Syed Sarim Imam ◽  
Nabil K. Alruwaili ◽  
Omar Awad Alsaidan ◽  
Mohammed H. Elkomy ◽  
...  

Hypertension is a cardiovascular disease that needs long-term medication. Oral delivery is the most common route for the administration of drugs. The present research is to develop piperine self-nanoemulsifying drug delivery system (PE-SNEDDS) using glyceryl monolinoleate (GML), poloxamer 188, and transcutol HP as oil, surfactant, and co-surfactant, respectively. The formulation was optimized by three-factor, three-level Box-Behnken design. PE-SNEDDs were characterized for globule size, emulsification time, stability, in-vitro release, and ex-vivo intestinal permeation study. The optimized PE-SNEDDS (OF3) showed the globule size of 70.34 ± 3.27 nm, percentage transmittance of 99.02 ± 2.02%, and emulsification time of 53 ± 2 s Finally, the formulation OF3 was transformed into solid PE-SNEDDS (S-PE-SNEDDS) using avicel PH-101 as adsorbent. The reconstituted SOF3 showed a globule size of 73.56 ± 3.54 nm, PDI of 0.35 ± 0.03, and zeta potential of −28.12 ± 2.54 mV. SEM image exhibited the PE-SNEDDS completely adsorbed on avicel. Thermal analysis showed the drug was solubilized in oil, surfactant, and co-surfactant. S-PE-SNEDDS formulation showed a more significant (p < 0.05) release (97.87 ± 4.89% in 1 h) than pure PE (27.87 ± 2.65% in 1 h). It also exhibited better antimicrobial activity against S. aureus and P. aeruginosa and antioxidant activity as compared to PE dispersion. The in vivo activity in rats exhibited better (p < 0.05) antihypertensive activity as well as 4.92-fold higher relative bioavailability than pure PE dispersion. Finally, from the results it can be concluded that S-PE-SNEDDS might be a better approach for the oral delivery to improve the absorption and therapeutic activity.


Author(s):  
A. A. Iakupova ◽  
S. R. Abdulkhakov ◽  
R. K. Zalyalov ◽  
A. G. Safin ◽  
R. A. Abdulkhakov

Aim. A literature review of intestinal permeability assessment techniques.Key points. The intestinal barrier is a functional entity separating the intestinal lumen and internal body, and intestinal permeability is a measure of the barrier functionality. The intestinal barrier integrity and permeability assays differ by the application setting (in vivo or ex vivo), subject (human or animal), marker molecules used to assess permeability (ions, various size carbohydrates, macromolecules, antigens, bacterial products and bacteria), biomaterial for the marker concentration assays (peripheral blood, portal venous blood, urine, stool). Despite a great variety of methods for assessing intestinal permeability, their clinical application requires further studies due to a lack of standardisation, the complexity of selected techniques and occasional limited reliability of results.Conclusion. Further investigation and improvement of intestinal permeability assays is required. The assay and result standardisation will facilitate practice in functional and organic intestinal diseases, as well as allergies, diabetes mellitus, non-alcoholic fatty liver disease and some other illnesses.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 48 ◽  
Author(s):  
Jacob Rune Jørgensen ◽  
Feiyang Yu ◽  
Ramakrishnan Venkatasubramanian ◽  
Line Hagner Nielsen ◽  
Hanne Mørck Nielsen ◽  
...  

Enhancing the oral bioavailability of peptides has received a lot of attention for decades but remains challenging, partly due to low intestinal membrane permeability. Combining a permeation enhancer (PE) with unidirectionally releasing microcontainers (MCs) has previously been shown to increase insulin permeation across Caco-2 cell monolayers. In the present work, this setup was further employed to compare three common PEs—sodium caprate (C10), sodium dodecyl sulfate (SDS), and lauroyl carnitine. The concept was also studied using porcine intestinal tissue with the inclusion of 70 kDa fluorescein isothiocyanate-dextran (FD70) as a pathogen marker. Moreover, a combined proteolysis and Caco-2 cell permeation setup was developed to investigate the effect of soybean trypsin inhibitor (STI) in the MCs. Lastly, in vivo performance of the MCs was tested in an oral gavage study in rats by monitoring blood glucose and insulin absorption. SDS proved to be the most potent PE without increasing the ex vivo uptake of FD70, while the implementation of STI further improved insulin permeation in the combined proteolysis Caco-2 cell setup. However, no insulin absorption in rats was observed upon oral gavage of MCs loaded with insulin, PE and STI. Post-mortem microscopic examination of their gastrointestinal tract indicated lack of intestinal retention and optimal orientation by the MCs, possibly precluding the potential advantage of unidirectional release.


Blood ◽  
2017 ◽  
Vol 130 (13) ◽  
pp. 1535-1542 ◽  
Author(s):  
Paula Río ◽  
Susana Navarro ◽  
Guillermo Guenechea ◽  
Rebeca Sánchez-Domínguez ◽  
Maria Luisa Lamana ◽  
...  

Key Points First evidence of phenotypic correction in FA hematopoietic repopulating cells by optimized collection and short transduction of CD34+ cells. Optimized ex vivo gene therapy of FA CD34+ cells confers proliferation advantage to phenotypically corrected repopulating cells.


Blood ◽  
2018 ◽  
Vol 131 (26) ◽  
pp. 2915-2928 ◽  
Author(s):  
Chang Li ◽  
Nikoletta Psatha ◽  
Pavel Sova ◽  
Sucheol Gil ◽  
Hongjie Wang ◽  
...  

Key Points CRISPR/Cas9-mediated disruption of a BCL11A binding site in HSCs of β-YAC mice results in the reactivation of γ-globin in erythrocytes. Our approach for in vivo HSC genome editing that does not require HSC transplantation and myeloablation should simplify HSC gene therapy.


Author(s):  
Yuqi Wang ◽  
Jianhui Weng ◽  
Xidan Wen ◽  
Yuxuan Hu ◽  
Deju Ye

Stimuli-responsive in situ self-assembly of small molecule probes into nanostructures has been promising for the construction of molecular probes for in vivo imaging.


2019 ◽  
Vol 819 ◽  
pp. 63-69
Author(s):  
May Phyu Thein Maw ◽  
Panadda Phattanawasin ◽  
Uthai Sotanaphun ◽  
Nusara Piyapolrungroj

Bioavailability of orally administered drugs can be influenced by many factors. Poor drug absorption across the intestinal membrane is one of the factors that contribute to low bioavailability of drugs. It has been suggested that the metabolism/active efflux in the small intestine is involved in the poor absorption of many drugs. Intestinal CYP3A4 and P-gp work coordinately to reduce the intracellular concentration of drugs. Recently, bioenhancers have been identified and extensively studied. The aim of this study was to evaluate natural furanocoumarins found in juices of common lime and kaffir lime as the potential enhancers for oral delivery by means of modulating CYP3A4 and/or P-gp activities. The role of isolated furanocoumarins on CYP3A4 was assessed by testosterone 6β-hydroxylation reaction, while the effect on P-gp was investigated using R123 and CAM uptake studies in Caco-2, as well as LLC-PK1 and LLC-GA5-Col300. In the present study, we demonstrated that isopimpinellin isolated from common lime is the best CYP3A4 inhibitor among 4 isolated furanocoumarins, implying that isopimpinellin would possibly act as a bioenhancer by inhibiting pre-systemic metabolism. 6’,7’-Dihydroxybergamottin found in kaffir lime is a dual inhibitor of CYP3A4 and P-gp, suggest that it could potentially be used as a bioenhancer by inhibiting both pre-systemic metabolism and efflux mechanism. However, in vivo study should be further conducted to confirm these effects in the body.


2014 ◽  
Vol 477 (1-2) ◽  
pp. 601-612 ◽  
Author(s):  
Yub Raj Neupane ◽  
Manish Srivastava ◽  
Nafees Ahmad ◽  
Neeraj Kumar ◽  
Aseem Bhatnagar ◽  
...  

Blood ◽  
2015 ◽  
Vol 125 (23) ◽  
pp. 3588-3597 ◽  
Author(s):  
Luke F. Peterson ◽  
Hanshi Sun ◽  
Yihong Liu ◽  
Harish Potu ◽  
Malathi Kandarpa ◽  
...  

Key Points Deubiquitinases Usp9x and Usp24 regulate Mcl-1 and myeloma cell survival. Small-molecule–mediated Usp9x/Usp24 inhibition induces apoptosis and blocks myeloma tumor growth in vivo.


Sign in / Sign up

Export Citation Format

Share Document