scholarly journals Biology and Application of Genome Editing

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. SCI-22-SCI-22
Author(s):  
Feng Zhang

Precision genome editing, which can be used to alter specific DNA sequences, is a powerful tool for understanding the molecular circuitry underlying cellular processes. Over the past several years, we and others have harnessed microbial CRISPR-Cas systems for use as platforms for a range of genome manipulations, including single and multiplex gene knockout, gene activation, and large-scale screening applications. Recently, we discovered and characterized several novel CRISPR systems that target RNA, including the CRISPR-Cas13 family. We developed a toolbox for RNA modulation based on Cas13, including methods for highly specific RNA knockdown, transcript imaging, and precision base editing. During our initial characterization of Cas13, we observed that Cas13 also exhibits so-called non-specific "collateral" RNase activity in vitro, which we capitalized on to create SHERLOCK, a highly sensitive and specific CRISPR diagnostic platform. We are continuing to refine and extend CRISPR-based technologies as well as explore microbial diversity to find new enzymes and systems that can be adapted for use as molecular biology tools and novel therapeutics. Disclosures Zhang: Arbor Biotechnologies: Consultancy, Equity Ownership; Sherlock Biosciences: Consultancy, Equity Ownership; Pairwise Plants: Consultancy, Equity Ownership; Beam Therapeutics: Consultancy, Equity Ownership; Editas Medicine: Consultancy, Equity Ownership.

Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1288
Author(s):  
Wendy Dong ◽  
Boris Kantor

CRISPR/Cas technology has revolutionized the fields of the genome- and epigenome-editing by supplying unparalleled control over genomic sequences and expression. Lentiviral vector (LV) systems are one of the main delivery vehicles for the CRISPR/Cas systems due to (i) its ability to carry bulky and complex transgenes and (ii) sustain robust and long-term expression in a broad range of dividing and non-dividing cells in vitro and in vivo. It is thus reasonable that substantial effort has been allocated towards the development of the improved and optimized LV systems for effective and accurate gene-to-cell transfer of CRISPR/Cas tools. The main effort on that end has been put towards the improvement and optimization of the vector’s expression, development of integrase-deficient lentiviral vector (IDLV), aiming to minimize the risk of oncogenicity, toxicity, and pathogenicity, and enhancing manufacturing protocols for clinical applications required large-scale production. In this review, we will devote attention to (i) the basic biology of lentiviruses, and (ii) recent advances in the development of safer and more efficient CRISPR/Cas vector systems towards their use in preclinical and clinical applications. In addition, we will discuss in detail the recent progress in the repurposing of CRISPR/Cas systems related to base-editing and prime-editing applications.


2019 ◽  
Vol 201 (17) ◽  
Author(s):  
Dragutin J. Savic ◽  
Scott V. Nguyen ◽  
Kimberly McCullor ◽  
W. Michael McShan

ABSTRACTA large-scale genomic inversion encompassing 0.79 Mb of the 1.816-Mb-longStreptococcus pyogenesserotype M49 strain NZ131 chromosome spontaneously occurs in a minor subpopulation of cells, and in this report genetic selection was used to obtain a stable lineage with this chromosomal rearrangement. This inversion, which drastically displaces theorisite relative to the terminus, changes the relative length of the replication arms so that one replichore is approximately 0.41 Mb while the other is about 1.40 Mb in length. Genomic reversion to the original chromosome constellation is not observed in PCR-monitored analyses after 180 generations of growth in rich medium. Compared to the parental strain, the inversion surprisingly demonstrates a nearly identical growth pattern in the first phase of the exponential phase, but differences do occur when resources in the medium become limited. When cultured separately in rich medium during prolonged stationary phase or in an experimental acute infection animal model (Galleria mellonella), the parental strain and the invertant have equivalent survival rates. However, when they are coincubated together, bothin vitroandin vivo, the survival of the invertant declines relative to the level for the parental strain. The accompanying aspect of the study suggests that inversions taking place nearoriCalways happen to secure the linkage oforiCto DNA sequences responsible for chromosome partition. The biological relevance of large-scale inversions is also discussed.IMPORTANCEBased on our previous work, we created to our knowledge the largest asymmetric inversion, covering 43.5% of theS. pyogenesgenome. In spite of a drastic replacement of origin of replication and the unbalanced size of replichores (1.4 Mb versus 0.41 Mb), the invertant, when not challenged with its progenitor, showed impressive vitality for growthin vitroand in pathogenesis assays. The mutant supports the existing idea that slightly deleterious mutations can provide the setting for secondary adaptive changes. Furthermore, comparative analysis of the mutant with previously published data strongly indicates that even large genomic rearrangements survive provided that the integrity of theoriCand the chromosome partition cluster is preserved.


2018 ◽  
Vol 475 (11) ◽  
pp. 1955-1964 ◽  
Author(s):  
Ayman Eid ◽  
Sahar Alshareef ◽  
Magdy M. Mahfouz

The CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 adaptive immunity system has been harnessed for genome editing applications across eukaryotic species, but major drawbacks, such as the inefficiency of precise base editing and off-target activities, remain. A catalytically inactive Cas9 variant (dead Cas9, dCas9) has been fused to diverse functional domains for targeting genetic and epigenetic modifications, including base editing, to specific DNA sequences. As base editing does not require the generation of double-strand breaks, dCas9 and Cas9 nickase have been used to target deaminase domains to edit specific loci. Adenine and cytidine deaminases convert their respective nucleotides into other DNA bases, thereby offering many possibilities for DNA editing. Such base-editing enzymes hold great promise for applications in basic biology, trait development in crops, and treatment of genetic diseases. Here, we discuss recent advances in precise gene editing using different platforms as well as their potential applications in basic biology and biotechnology.


Author(s):  
Pei Guo ◽  
Sik Lok Lam

Abstract Spinocerebellar ataxia type 10 (SCA10) is a progressive genetic disorder caused by ATTCT pentanucleotide repeat expansions in intron 9 of the ATXN10 gene. ATTCT repeats have been reported to form unwound secondary structures which are likely linked to large-scale repeat expansions. In this study, we performed high-resolution nuclear magnetic resonance spectroscopic investigations on DNA sequences containing two to five ATTCT repeats. Strikingly, we found the first two repeats of all these sequences well folded into highly compact minidumbbell (MDB) structures. The 3D solution structure of the sequence containing two ATTCT repeats was successfully determined, revealing the MDB comprises a regular TTCTA and a quasi TTCT/A pentaloops with extensive stabilizing loop-loop interactions. We further carried out in vitro primer extension assays to examine if the MDB formed in the primer could escape from the proofreading function of DNA polymerase. Results showed that when the MDB was formed at 5-bp or farther away from the priming site, it was able to escape from the proofreading by Klenow fragment of DNA polymerase I and thus retained in the primer. The intriguing structural findings bring about new insights into the origin of genetic instability in SCA10.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Bo Li ◽  
Naixia Ren ◽  
Lele Yang ◽  
Junhao Liu ◽  
Qilai Huang

AbstractCRISPR/Cas9 technology has been widely used for targeted genome modification both in vivo and in vitro. However, an effective method for evaluating genome editing efficiency and screening single-cell clones for desired modification is still lacking. Here, we developed this real time PCR method based on the sensitivity of Taq DNA polymerase to nucleotide mismatch at primer 3′ end during initiating DNA replication. Applications to CRISPR gRNAs targeting EMX1, DYRK1A and HOXB13 genes in Lenti-X 293 T cells exhibited comprehensive advantages. Just in one-round qPCR analysis using genomic DNA from cells underwent CRISPR/Cas9 or BE4 treatments, the genome editing efficiency could be determined accurately and quickly, for indel, HDR as well as base editing. When applied to single-cell clone screening, the genotype of each cell colony could also be determined accurately. This method defined a rigorous and practical way in quantify genome editing events.


2020 ◽  
Author(s):  
Nathaly Andrea Montenegro Benavides ◽  
Alejandro Alvarez Borrero ◽  
Mario Luis Arrieta Ortiz ◽  
Luis Miguel Rodriguez-R. ◽  
David Octavio Botero Rozo ◽  
...  

Abstract Background: The type VI protein secretion system (T6SS) is important in diverse cellular processes in Gram-negative bacteria, including interactions with other bacteria and with eukaryotic hosts. In this study we analyze the evolution of the T6SS in the genus Xanthomonas and evaluate its importance of the T6SS for virulence and in vitro motility in Xanthomonas phaseoli pv. manihotis (Xpm), the causal agent of bacterial blight in cassava (Manihot esculenta). We delineate the organization of the T6SS gene clusters in Xanthomonas and then characterize proteins of this secretion system in Xpm strain CIO151. Results: We describe the presence of three different clusters in the genus Xanthomonas that vary in their organization and degree of synteny between species. Using a gene knockout mutagenesis, we also found that vgrG and hcp are required for maximal aggressiveness of Xpm on cassava plants while clpV is important for both motility and maximal aggressiveness. Conclusion: We characterized the T6SS in 15 different strains in Xanthomonas and our phylogenetic analyses suggest that the T6SS might have been acquired by a very ancient event of horizontal gene transfer and maintained through evolution, hinting at their importance for the adaptation of Xanthomonas to their hosts. Finally, we demonstrated that the T6SS of Xpm is functional, and significantly contributes to virulence and motility. This is the first experimental study that demonstrates the role of the T6SS in the Xpm-cassava interaction and the T6SS organization in the genus Xanthomonas.


2020 ◽  
Author(s):  
Nathaly Andrea Montenegro Benavides ◽  
Alejandro Alvarez Borrero ◽  
Mario Luis Arrieta Ortiz ◽  
Luis Miguel Rodriguez-R. ◽  
David Octavio Botero Rozo ◽  
...  

Abstract Background: The type VI protein secretion system (T6SS) is important in diverse cellular processes in Gram-negative bacteria, including interactions with other bacteria and with eukaryotic hosts. In this study we analyze the evolution of the T6SS in the genus Xanthomonas and evaluate its importance of the T6SS for virulence and in vitro motility in Xanthomonas phaseoli pv. manihotis (Xpm), the causal agent of bacterial blight in cassava (Manihot esculenta). We delineate the organization of the T6SS gene clusters in Xanthomonas and then characterize proteins of this secretion system in Xpm strain CIO151. Results: We describe the presence of three different clusters in the genus Xanthomonas that vary in their organization and degree of synteny between species. Using a gene knockout mutagenesis, we also found that vgrG and hcp are required for maximal aggressiveness of Xpm on cassava plants while clpV is important for both motility and maximal aggressiveness. Conclusion: We characterized the T6SS in 15 different strains in Xanthomonas and our phylogenetic analyses suggest that the T6SS might have been acquired by a very ancient event of horizontal gene transfer and maintained through evolution, hinting at their importance for the adaptation of Xanthomonas to their hosts. Finally, we demonstrated that the T6SS of Xpm is functional, and significantly contributes to virulence and motility. This is the first experimental study that demonstrates the role of the T6SS in the Xpm-cassava interaction and the T6SS organization in the genus Xanthomonas.


2015 ◽  
Vol 27 (1) ◽  
pp. 108
Author(s):  
H. Matsunari ◽  
M. Watanabe ◽  
K. Nakano ◽  
A. Uchikura ◽  
Y. Asano ◽  
...  

Genome editing technologies have been used as a powerful strategy for the generation of genetically modified pigs. We previously developed genetically modified clone pigs with organogenesis-disabled phenotypes, as well as pigs exhibiting diseases with similar features to those of humans. Here, we report the production efficiency of various gene knockout cloned pigs from somatic cells that were genetically modified using zinc finger nucleases (ZFN) or transcription activator-like effector nucleases (TALEN). The ZFN- or TALEN-encoding mRNAs, which targeted 7 autosomal or X-linked genes, were introduced into porcine fetal fibroblast cells using electroporation. Clonal cell populations carrying induced mutations were selected after limiting dilution. The targeted portion of the genes was amplified using PCR, followed by sequencing and mutation analysis. Among the collected knockout cell colonies, cells showing good proliferation and morphology were selected and used for somatic cell nuclear transfer (SCNT). In vitro-matured oocytes were obtained from porcine cumulus-oocyte complexes cultured in NCSU23-based medium and were used to obtain recipient oocytes for SCNT after enucleation. SCNT was performed as reported previously (Matsunari et al. 2008). The cloned embryos were cultured for 7 days in porcine zygote medium (PZM)-5 to assess their developmental ability. Cloned embryos were transplanted into the oviduct or uterus of oestrus-synchronized recipient gilts to evaluate their competence to develop to fetuses or piglets. Cloned embryos reconstructed with 7 types of knockout cells showed equal development to blastocysts compared with those derived from the wild-type cells (54.5–83.3% v. 60.7%). Our data (Table 1) demonstrated that the reconstructed embryos derived from knockout cells could efficiently give rise to cloned offspring regardless of the type of genome editing methodology (i.e. ZFN or TALEN). Table 1.Production efficiency of gene knockout cloned pigs using genome editing This study was supported by JST, ERATO, the Nakauchi Stem Cell and Organ Regeneration Project, JST, CREST, Meiji University International Institute for Bio-Resource Research (MUIIBR), and JSPS KAKENHI Grant Number 26870630.


2017 ◽  
Vol 4 (5) ◽  
pp. 170095 ◽  
Author(s):  
Tom Beneke ◽  
Ross Madden ◽  
Laura Makin ◽  
Jessica Valli ◽  
Jack Sunter ◽  
...  

Clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR-associated gene 9 (Cas9) genome editing is set to revolutionize genetic manipulation of pathogens, including kinetoplastids. CRISPR technology provides the opportunity to develop scalable methods for high-throughput production of mutant phenotypes. Here, we report development of a CRISPR-Cas9 toolkit that allows rapid tagging and gene knockout in diverse kinetoplastid species without requiring the user to perform any DNA cloning. We developed a new protocol for single-guide RNA (sgRNA) delivery using PCR-generated DNA templates which are transcribed in vivo by T7 RNA polymerase and an online resource (LeishGEdit.net) for automated primer design. We produced a set of plasmids that allows easy and scalable generation of DNA constructs for transfections in just a few hours. We show how these tools allow knock-in of fluorescent protein tags, modified biotin ligase BirA*, luciferase, HaloTag and small epitope tags, which can be fused to proteins at the N- or C-terminus, for functional studies of proteins and localization screening. These tools enabled generation of null mutants in a single round of transfection in promastigote form Leishmania major , Leishmania mexicana and bloodstream form Trypanosoma brucei ; deleted genes were undetectable in non-clonal populations, enabling for the first time rapid and large-scale knockout screens.


2021 ◽  
Vol 22 (12) ◽  
pp. 6457
Author(s):  
Ho Joung Lee ◽  
Hyun Ju Kim ◽  
Sang Jun Lee

The CRISPR/Cas9 system has recently emerged as a useful gene-specific editing tool. However, this approach occasionally results in the digestion of both the DNA target and similar DNA sequences due to mismatch tolerance, which remains a significant drawback of current genome editing technologies. However, our study determined that even single-base mismatches between the target DNA and 5′-truncated sgRNAs inhibited target recognition. These results suggest that a 5′-truncated sgRNA/Cas9 complex could be used to negatively select single-base-edited targets in microbial genomes. Moreover, we demonstrated that the 5′-truncated sgRNA method can be used for simple and effective single-base editing, as it enables the modification of individual bases in the DNA target, near and far from the 5′ end of truncated sgRNAs. Further, 5′-truncated sgRNAs also allowed for efficient single-base editing when using an engineered Cas9 nuclease with an expanded protospacer adjacent motif (PAM; 5′-NG), which may enable whole-genome single-base editing.


Sign in / Sign up

Export Citation Format

Share Document