Combined EZH2 and BCL2 Inhibitors As Precision Therapy for Genetically Defined DLBCL Subtypes

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 304-304 ◽  
Author(s):  
Destini Gibbs ◽  
Herman Van Besien ◽  
Stephenson Regan ◽  
Ankur Singh ◽  
Matthew Teater ◽  
...  

DLCBL has recently been classified into genetically defined subtypes based on groupings of particular genetic lesions (Chapuy et al, Nat Med 2018; Schmitz et al, NEJM 2018). One predominant cluster, C3 or EZB, is defined by mutations in the chromatin modifying genes EZH2, KMT2D, and CREBBP as well as alterations in BCL2 including mutations and/or translocation of BCL2 to the IgH enhancer. Since tumors in this cluster are likely dependent on both EZH2 and BCL2, and these oncogenes carry out their effects through distinct mechanisms and pathways, targeting both of these oncogenes is a rational therapeutic approach. We hypothesized that EZH2 inhibition and BCL2 inhibition would be synergistic in DLBCL with characteristics of the C3/EZB cluster. To test this, we evaluated the EZH2 inhibitor tazemetostat and the BCL2 inhibitor venetoclax in DLBCL cells, 3D lymphoma organoids, and patient derived xenografts. To assess the effect of combination therapy with tazemetostat and venetoclax, we administered each drug alone and the combination in a panel of DLBCL cell lines, including cells with and without EZH2 mutation and BCL2 translocation. In DLBCL cells with both a BCL2 translocation and EZH2 mutation, the combination resulted in increased killing compared to either drug alone (Figure 1, SUDHL6 (p<0.005), WSU-DLCL2 (p<0.005), and OCI-LY1 (p<0.005)). In contrast, in cells with WT EZH2 and no BLC2 translocation, the effect of the combination was not different than either drug alone. To evaluate for synergy, cells were exposed to increasing doses of each drug alone and the combination. The combined response was evaluated using the Chou-Talalay method. Synergy between tazemetostat and venetoclax was observed in SUDLH-6 (CI value 0.03), WSU-DLCL2 (CI 0.26) and OCI-LY1 (CI 0.06) but not in Farage and LY7 both of which have WT EZH2 and no BCL2 translocation. Since cell lines in suspension do not reflect lymph node architecture, we developed a 3D lymphoma "organoid" culture system that consists of extracellular matrix, lymphoma cells, and stromal cells (Tian et al, Biomaterials 2015; Beguelin et al, Nat Commun 2017). GCB-DLBCLs express integrin αvβ3 that may bind to RGD peptides or vitronectin in tumor extracellular matrix. Based on this, we developed matrix metalloproteinase (MMP)-degradable 3D lymphoma hydrogels functionalized with RGD peptides. To generate organoids, we homogeneously encapsulated DLBCL cells (40,000/gel) in 10 µL hydrogel droplets fabricated in individual wells of a 96-well plate. We established two organoid systems to evaluate response to tazemetostat/venetoclax combination therapy: 1) OCI-LY1 organoids; 2) patient derived xenograft (PDX) organoids. The PDX organoids were generated from a patient tumor after propagation in NSG mice. The PDX tumor harbors both a BCL2 translocation and EZH2 mutation. Organoid viability was evaluated using immunofluorescence for calcein AM (live cells) and ethidium homodimer (dead cells) as well as flow cytometry. In both OCI-Ly1 organoids and PDX organoids, tazemetostat and venetoclax had minimal activity as single agents, however the combination resulted in significant cell killing (Figure 2). To investigate potential mechanisms of synergy, we evaluated RNA-seq profiles of a panel of DLBCL cell lines (n=26) treated with vehicle vs. EZH2 inhibitor (Brach et al, Mol Cancer Ther 2017). Preliminary data suggest that EZH2 inhibition induces expression of pro-apoptotic proteins genes including BCL2L11 (Wilcoxon p=0.01), BAD (p=0.02), BMF (p<0.01), BCL2L13 (p=0.02), and BCL2L14 (p<0.01). BCL2 inhibition with venetoclax may be further enhancing pro-apoptotic signals and lymphoma cell death, especially in C3/EZB DLBCL tumors with dependence on BCL2. In summary, using novel model systems, we have demonstrated that BCL2 inhibition combined with EZH2 inhibition results in synergistic anti-tumor effect that is anticipated to be especially effective as precision therapy for the newly identified cluster 3/EZB DLBCL subtype. A clinical trial of this combination is currently in development. Disclosures Melnick: Janssen: Research Funding; Constellation: Consultancy; Epizyme: Consultancy. Roth:Janssen: Consultancy; ADC Therapuetics: Consultancy; Merck: Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3932-3932
Author(s):  
Julia Etchin ◽  
Bonnie Thi Le ◽  
Alex Kentsis ◽  
Richard M. Stone ◽  
Dilara McCauley ◽  
...  

Abstract Current treatments for acute myeloid leukemia (AML) often fail to induce long-term remissions and are also toxic to normal tissues, prompting the need to develop new targeted therapies. One attractive cellular pathway with therapeutic potential is nuclear export, which is mediated in part by nuclear exporter CRM1/XPO1. XPO1 mediates the transport of ∼220 proteins and several mRNAs and is the sole nuclear exporter of the major tumor suppressor and growth regulatory proteins p53, p73, FOXO, IkB/NF-kB, Rb, p21, and NPM. Our findings demonstrate that novel irreversible inhibitors of XPO1, termed Selective Inhibitors of Nuclear Export, or SINE, induce rapid apoptosis in 12 AML and 14 T-ALL cell lines with IC50s of 15-474 nM. In the SINE-sensitive cell lines, BCL2 overexpression suppresses SINE-induced apoptosis, indicating its intrinsic pathway mediation. Oral administration of clinical XPO1 inhibitor, Selinexor (KPT-330), at 15 or 25 mg/kg, induced remarkable growth suppression in MV4-11 human AML cells and MOLT-4 human T-ALL cells engrafted in immunodeficient NSG mice with negligible toxicity to normal mouse hematopoietic cells after 35 days of treatment. Bone marrow biopsies of selinexor - treated mice were remarkable in that they showed normal hematopoietic cell morphology and cellularity after 35 days of treatment. Significant survival benefit was observed in mice treated with selinexor, compared to vehicle-treated mice. Selinexor is now in Phase 1 clinical trial in patients with AML and other hematological malignancies (NCT01607892). Recently, we have established primagraft models of AML, using primary leukemia blasts isolated from AML patients at diagnosis transplanted into immunocompromised NSG mice. We demonstrated that selinexor exhibits striking anti-leukemic activity against different subtypes of primary AML, including AML-M4; FLT3-ITD and complex karyotype subtypes of the disease. To determine whether selinexor targets leukemia-initiating cells (LICs) of primary AML, we re-transplanted serial dilutions of human CD45+ cells isolated from leukemic mice treated with either vehicle or selinexor. The preliminary results of our re-population assays indicate that selinexor greatly diminished LIC frequency in AML-M4; FLT3-ITD AML (∼6 fold) and complex karyotype disease (∼100 fold). These findings demonstrate that selinexor may represent a novel targeted therapy for the treatment of AML, which spares normal hematopoietic stem and progenitor cells. Disclosures: McCauley: Karyopharm Therapeutics Inc.: Employment, Equity Ownership, Patents & Royalties. Kauffman:Karyopharm Therapeutics Inc.: Employment, Equity Ownership, Membership on an entity’s Board of Directors or advisory committees, Patents & Royalties. Shacham:Karyopharm Therapeutics Inc.: Employment, Equity Ownership, Membership on an entity’s Board of Directors or advisory committees, Patents & Royalties.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3349-3349
Author(s):  
Christine Birdwell ◽  
Warren C. Fiskus ◽  
Christopher Peter Mill ◽  
John A. Davis ◽  
Arnold Salazar ◽  
...  

Abstract EVI1 gene maps to the MECOM locus at chromosome 3q26.2 and encodes for a zinc finger domain-containing transcriptional regulator. EVI1 supports hematopoietic stem cell self-renewal and blocks hematopoietic differentiation. EVI1 is overexpressed in up to 10% of AML, including those harboring chromosome translocation t(3;3)(q21;q26.2) or inv(3)(q21;q26.2), where the distal GATA2 hematopoietic enhancer is repositioned to induce EVI1 overexpression while repressing GATA2. EVI1 overexpression due to 3q26.2 lesions in MDS and AML is frequently associated with monosomy 7 and confers poor response to therapy and inferior relapse-free and overall survival. We had previously reported the pre-clinical efficacy of targeting TBL1/R1-nuclear β-catenin-TCF7L2 by tegavivint (BC-2059, Iterion Therapeutics) against AML stem/progenitor cells. This led us to interrogate the anti-AML activity of tegavivint (TV) in AML models harboring 3q26.2 lesions, where EVI1 overexpression has been documented to drive the biology of AML stem/progenitor cells. For this, we utilized AML cell lines with 3q26.2 lesions with/without monosomy 7 (UCSD-AML1, OCI-AML20, AML191 / MUTZ-3, AML194, HNT34), as well as patient-derived (PD) AML cells with 3q26 lesions with or without monosomy 7. Treatment with TV (10 to 100 nM) dose-dependently induced apoptosis in these cellular models. This was associated with attenuation of protein levels (determined by immunoblot analyses) of EVI1, TCF7L2, c-Myc, c-Myb, RUNX1, CEBPα, c-KIT, BCL2, Bcl-xL and MCL1, but upregulation of CD11b, BIM and cleaved PARP levels. Additionally, pan-BET protein inhibitor OTX015 (100 to 1000 nM) dose-dependently induced apoptosis of AML cell lines and PD AML cells with t(3:3)/inv(3). Following TV treatment, RNA-Seq and gene set enrichment analysis in UCSD-AML1 and OCI-AML20 cells showed log2 fold-changes in gene expression and positive enrichment of pathway genes and/or reactomes of inflammatory response, TNFα and interferon signaling, TGFβ, NOTCH and apoptosis signaling, as well as negative enrichment of gene sets of c-Myc, E2F, G2M checkpoint, DNA replication and repair and chromosome maintenance (all with FDR q-values < 0.1). QPCR analysis showed repression of EVI1, MYC and KIT, but upregulation of Axin2 mRNAs. Following TV treatment, confocal microscopy showed reduction of nuclear protein levels of EVI1 and β-catenin, as well as disrupted their co-localization with TBL1. Proximity ligation assay also demonstrated that exposure to TV significantly reduced the proximity of TBL1 and EVI1 as well as of TBL1 and β-catenin. Mass cytometry (CyTOF) analysis of patient-derived (PD) AML samples with t(3:3)/inv(3) confirmed that TV treatment attenuated protein levels of EVI1, c-Myc, RUNX1, β-catenin, TBL1/R1, Bcl-xL, BCL2, MCL1 and Ki67, but augmented protein levels of APC and cleaved PARP in phenotypically characterized AML stem cells (with high expression of CLEC12A, CD123, CD244, CD99, but low expression of CD11b). Consistent with effects of TV on gene-expressions that regulate cell death pathways, in vitro co-treatment with TV and BCL2 inhibitor venetoclax or OTX015 synergistically induced apoptosis (as determined by the SynergyFinder algorithm) of AML cell lines and PD AML cells with t(3:3)/inv(3) and EVI1 overexpression. In the in vivo HNT-34 model of flank-implanted and established tumors in athymic nude mice, treatment with TV (50 mg/kg, TIW, IP) and venetoclax (30 mg/kg, PO, daily) for 5-weeks yielded more tumor growth delay than vehicle control or TV alone. Additionally, following tail vein infusion and engraftment of luciferized AML191 cells in NSG mice, treatment with TV and/or venetoclax or OTX015 (30 mg/kg, PO, daily) was evaluated for 6 weeks. Co-treatment with TV and venetoclax or TV and OTX015 significantly reduced AML growth (determined by reduction in bioluminescence by Xenogen camera) (p < 0.05), as well as improved overall survival of the NSG mice more than treatment with each drug alone or vehicle control, without any toxicity. Collectively, these findings highlight that targeted inhibition of TBL1/R1-nuclear β-catenin-TCF7L2 by treatment with TV also inhibits EVI1 and its targets. They also demonstrate superior pre-clinical efficacy of novel TV-based combinations with BCL2 or BET protein inhibitor against AML models harboring 3q26 lesion and EVI1 overexpression. Disclosures DiNardo: Celgene, a Bristol Myers Squibb company: Honoraria, Research Funding; Forma: Honoraria, Research Funding; Foghorn: Honoraria, Research Funding; GlaxoSmithKline: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Honoraria, Research Funding; ImmuneOnc: Honoraria, Research Funding; Notable Labs: Current holder of stock options in a privately-held company, Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria; Novartis: Honoraria; AbbVie: Consultancy, Research Funding; Agios/Servier: Consultancy, Honoraria, Research Funding. Takahashi: Symbio Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees; GSK: Consultancy; Novartis: Consultancy; Celgene/BMS: Consultancy. Horrigan: Iterion Therapeutics: Current Employment. Kadia: Astellas: Other; Cure: Speakers Bureau; Genfleet: Other; Ascentage: Other; Jazz: Consultancy; Sanofi-Aventis: Consultancy; Dalichi Sankyo: Consultancy; Cellonkos: Other; Novartis: Consultancy; AstraZeneca: Other; BMS: Other: Grant/research support; Liberum: Consultancy; Amgen: Other: Grant/research support; Pulmotech: Other; Pfizer: Consultancy, Other; Genentech: Consultancy, Other: Grant/research support; Aglos: Consultancy; AbbVie: Consultancy, Other: Grant/research support.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4220-4220
Author(s):  
Christopher Letson ◽  
Alexis Vedder ◽  
Ariel Quintana ◽  
Phillip Liu ◽  
Brett Reid ◽  
...  

CMML is a lethal myeloid neoplasm with no therapies that improve its dismal prognosis. Inhibition of BET family members has been proposed as a therapeutic strategy based on preclinical data identifying BRD4 as a therapeutic target in acute myeloid leukemia. However, despite potent on-target transcriptional remodeling, early phase clinical trials have demonstrated only modest activity secondary to a variety of resistance mechanisms. In ovarian cancer BET inhibitor (BETi) treated cells, compensatory upregulation and addiction to pro-survival kinase networks have been observed. Given that over 50% of CMML cases have mutations upregulating kinase signaling, we hypothesized that BETi resistance is mediated by these networks in CMML and can be targeted therapeutically. We tested this hypothesis by performing a limited screen of kinase inhibitors alone and in combination with the IC20 of the BETi INCB54329 in 8 human leukemia cell lines. This screen revealed that the IC50 of the PIM inhibitor (PIMi) INCB53914 decreased after co-treatment with BETi in a majority of the leukemia cell lines tested. Synergy was validated chemically in U937, TF1 and SKM1 leukemia cells using other selective inhibitors of BET and PIM. We next assessed the activity of the BET-PIM combination in 14-day colony formation assays with 10 unique CMML bone marrow mononuclear cell (BM-MNCs) patient samples(Fig. 1A). These studies revealed that combination therapy significantly suppressed clonogenicity versus BMNCs treated with vehicle or single drug alone. Finally, this synergy was validated in vivo in 36 patient derived xenografts (PDX) from 3 CMML patients, as manifest by reduced leukemic burden/engraftment in CMML PDX treated with combination therapy(Fig. 1B). To explore the mechanism by which BETi and PIMi therapeutically synergize we treated U937 and SKM1 leukemia cells with INCB54329 and measured mRNA and protein levels for all PIM isoforms. Surprisingly, we identified that PIM1 was increased following treatment with INCB54329, other BETi, or a JQ1-derived PROTAC (Fig. 1C). PIM1 upregulation was also manifest in INCB54329 persistor U937 leukemia cells generated by daily BETi treatment for 6 weeks. Testing across a broader panel of leukemia cell lines revealed an inverse correlation between PIM1 induction and decrease in the IC50 of PIMi following BETi treatment, suggesting PIM1 upregulation confers sensitivity to combination therapy. Consistent with this, isogenic SKM1 leukemia cells engineered to overexpress PIM1 were resistant to INCB54329 and were more sensitive to INCB53914 versus controls cells. Recent studies have demonstrated that inhibitory miRNAs, especially those located near super-enhancers, are suppressed by BET inhibition. Given that several miRNAs are known to control PIM1 expression, we hypothesized that paradoxical PIM1 upregulation following BETi treatment was due to down-regulation of select miRNAs. To test this, we treated our leukemia cell models with broad inhibitors of miRNA activity (i.e., AGO and Dicer inhibitors) and observed a dose dependent increase in PIM1 levels similar to that seen with BET inhibition(Fig. 1Di). Further, integrating public H3K27 CHIP-seq and miRNA super enhancer datasets and using computational prediction algorithms, we identified 6 candidate miRNAs that could regulate PIM1 and were predicted to be controlled by BET inhibitors. Of these, only miR-33a levels were reduced in a dose dependent manner in SKM1 cells by BETi treatment(Fig. 1Dii). This was confirmed by genetically silencing all BET proteins, which suppressed miR-33a levels in SKM1 leukemia cells. Finally, miR-33a mimics (but not control miRNAs) abolished BETi-induced upregulation of PIM1(Fig. 1Diii). Collectively, these studies established BET and PIM inhibition as a novel and potent combination therapy for CMML that is mediated by miR-33a-dependent upregulation of PIM1(Fig. 1E). Disclosures Liu: Incyte Corporation: Employment. Patnaik:Stem Line Pharmaceuticals.: Membership on an entity's Board of Directors or advisory committees. Lancet:Daiichi Sankyo: Consultancy, Other: fees for non-CME/CE services ; Agios, Biopath, Biosight, Boehringer Inglheim, Celator, Celgene, Janssen, Jazz Pharmaceuticals, Karyopharm, Novartis: Consultancy; Pfizer: Consultancy, Research Funding. Komrokji:Novartis: Speakers Bureau; JAZZ: Speakers Bureau; JAZZ: Consultancy; Agios: Consultancy; Incyte: Consultancy; DSI: Consultancy; pfizer: Consultancy; celgene: Consultancy. Epling-Burnette:Incyte Corporation: Research Funding. List:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding. Haura:Incyte Corporation: Research Funding. Reuther:Incyte Corporation: Research Funding. Koblish:Incyte Corporation: Employment.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3299-3299
Author(s):  
Joel G Turner ◽  
Trinayan Kashyap ◽  
Jana L Dawson ◽  
Juan A Gomez ◽  
Alexis Bauer ◽  
...  

Abstract Introduction: Acquired proteasome-inhibitor (PI) resistance is a major obstacle in the treatment of multiple myeloma (MM). We investigated whether the clinical XPO1-inhibitor selinexor, when combined with bortezomib or carfilzomib, could overcome acquired-resistance in MM. Materials and Methods: PI-resistant myeloma cell lines, RPMI8226-B25 and U226 PSR, and their respective parental cell lines RPMI8226 and U266, were treated both in vitro with selinexor/bortezomib or selinexor/carfilzomib and assayed for apoptosis. In vivo studies using U266 and U266PSR tumors were performed in NOD/SCID-gamma (NSG) mice. Mice were treated with selinexor/bortezomib and single agents. Bone marrow biopsies from refractory myeloma patients were treated ex vivo with selinexor/bortezomib or selinexor/carfilzomib and assayed for apoptosis. Mechanistic studies included NFkB pathway protein expression assays, immunofluorescence microscopy, ImageStream flow-cytometry and proximity-ligation assay. IkBα knockdown and NFkB transcriptional activity were measured in selinexor/bortezomib treated MM cells. Results: We found that selinexor restored sensitivity of PI-resistant RPMI8226-B25 and U266PSR MM cells to bortezomib (P = 0.00055) and carfilzomib (P = 0.0017). Bortezomib, when combined with selinexor reduced U266 MM tumor growth versus single-agent bortezomib (P = 0.022) in NSG mice. NSG mice challenged with PI-resistant U266PSR MM tumors also had reduced tumor growth with selinexor/bortezomib as compared to single agent bortezomib (P = 0.0006). Combining bortezomib and selinexor improved survival in mice with U266 MM tumors (P = 0.0072) and PI-resistant U266PSR when compared to single-agent bortezomib (P = 0.0072). Myeloma cells from PI-refractory MM patients (n=14) were sensitized by selinexor to bortezomib (P = 0.002) and carfilzomib (P = 0.001) without affecting non-myeloma cells. Immunofluorescence microscopy of PI-resistant human MM cell lines found a greater than 212% increase in IkBα when compared to untreated cells (confirmed by Western blot). A similar increase in IkBα immunofluorescence was found in newly diagnosed, relapsed and refractory patient MM cells. ImageStream analyses of MM cells showed an increase in total and nuclear IkBα from selinexor/bortezomib exposure. Proximity-ligation assays showed that IkBα-NFkB-complexes were increased 12-fold in bortezomib/selinexor treated MM cells. IkBα knockdown abrogated selinexor/bortezomib induced cytotoxicity in MM cells. Selinexor/bortezomib treatment decreased NFkB transcriptional activity in addition to a reduction of NFkB induced IAP-1, IAP-2, BCL-2, cyclin D2 and c-myc protein expression.. Conclusions: Selinexor, when used with bortezomib or carfilzomib has the potential to overcome proteasome-inhibitor drug-resistance in MM. Sensitization may be due to inactivation of the NFkB pathway by IkBα. Selinexor, an orally active selective inhibitor of XPO1-mediated nuclear export (SINE), is currently undergoing phase I/II studies in a variety of indications, including a combination with carfilzomib, in both relapsed and refractory MM patients (NCT02199665). The results presented in this study support combinatorial clinical trials in relapsed and refractory MM that utilize PI therapies. Disclosures Kashyap: Karyopharm Therapeutics: Employment, Equity Ownership. Shain:Takeda/Millennium: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Signal Genetics: Research Funding; Novartis: Speakers Bureau; Amgen/Onyx: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Landesman:Karyopharm Therapeutics Inc: Employment, Other: stockholder.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 212
Author(s):  
Katharina Amschler ◽  
Michael P. Schön

Cancer comprises a large group of complex diseases which arise from the misrouted interplay of mutated cells with other cells and the extracellular matrix. The extracellular matrix is a highly dynamic structure providing biochemical and biophysical cues that regulate tumor cell behavior. While the relevance of biochemical signals has been appreciated, the complex input of biophysical properties like the variation of ligand density and distribution is a relatively new field in cancer research. Nanotechnology has become a very promising tool to mimic the physiological dimension of biophysical signals and their positive (i.e., growth-promoting) and negative (i.e., anti-tumoral or cytotoxic) effects on cellular functions. Here, we review tumor-associated cellular functions such as proliferation, epithelial-mesenchymal transition (EMT), invasion, and phenotype switch that are regulated by biophysical parameters such as ligand density or substrate elasticity. We also address the question of how such factors exert inhibitory or even toxic effects upon tumor cells. We describe three principles of nanostructured model systems based on block copolymer nanolithography, electron beam lithography, and DNA origami that have contributed to our understanding of how biophysical signals direct cancer cell fate.


2021 ◽  
Vol 9 (2) ◽  
pp. 307
Author(s):  
Evelyn J. Franco ◽  
Xun Tao ◽  
Kaley C. Hanrahan ◽  
Jieqiang Zhou ◽  
Jürgen B. Bulitta ◽  
...  

Chikungunya virus (CHIKV) is an alphavirus associated with a broad tissue tropism for which no antivirals or vaccines are approved. This study evaluated the antiviral potential of favipiravir (FAV), interferon-alpha (IFN), and ribavirin (RBV) against CHIKV as mono- and combination-therapy in cell lines that are clinically relevant to human infection. Cells derived from human connective tissue (HT-1080), neurons (SK-N-MC), and skin (HFF-1) were infected with CHIKV and treated with different concentrations of FAV, IFN, or RBV. Viral supernatant was sampled daily and the burden was quantified by plaque assay on Vero cells. FAV and IFN were the most effective against CHIKV on various cell lines, suppressing the viral burden at clinically achievable concentrations; although the degree of antiviral activity was heavily influenced by cell type. RBV was not effective and demonstrated substantial toxicity, indicating that it is not a feasible candidate for CHIKV. The combination of FAV and IFN was then assessed on all cell lines. Combination therapy enhanced antiviral activity in HT-1080 and SK-N-MC cells, but not in HFF-1 cells. We developed a pharmacokinetic/pharmacodynamic model that described the viral burden and inhibitory antiviral effect. Simulations from this model predicted clinically relevant concentrations of FAV plus IFN completely suppressed CHIKV replication in HT-1080 cells, and considerably slowed down the rate of viral replication in SK-N-MC cells. The model predicted substantial inhibition of viral replication by clinical IFN regimens in HFF-1 cells. Our results highlight the antiviral potential of FAV and IFN combination regimens against CHIKV in clinically relevant cell types.


2018 ◽  
Vol 315 (4) ◽  
pp. H771-H789 ◽  
Author(s):  
Nethika R. Ariyasinghe ◽  
Davi M. Lyra-Leite ◽  
Megan L. McCain

Many cardiovascular diseases are associated with pathological remodeling of the extracellular matrix (ECM) in the myocardium. ECM remodeling is a complex, multifactorial process that often contributes to declines in myocardial function and progression toward heart failure. However, the direct effects of the many forms of ECM remodeling on myocardial cell and tissue function remain elusive, in part because conventional model systems used to investigate these relationships lack robust experimental control over the ECM. To address these shortcomings, microphysiological systems are now being developed and implemented to establish direct relationships between distinct features in the ECM and myocardial function with unprecedented control and resolution in vitro. In this review, we will first highlight the most prominent characteristics of ECM remodeling in cardiovascular disease and describe how these features can be mimicked with synthetic and natural biomaterials that offer independent control over multiple ECM-related parameters, such as rigidity and composition. We will then detail innovative microfabrication techniques that enable precise regulation of cellular architecture in two and three dimensions. We will also describe new approaches for quantifying multiple aspects of myocardial function in vitro, such as contractility, action potential propagation, and metabolism. Together, these collective technologies implemented as cardiac microphysiological systems will continue to uncover important relationships between pathological ECM remodeling and myocardial cell and tissue function, leading to new fundamental insights into cardiovascular disease, improved human disease models, and novel therapeutic approaches.


2020 ◽  
Vol 153 (1) ◽  
Author(s):  
Gregory I. Mashanov ◽  
Tatiana A. Nenasheva ◽  
Tatiana Mashanova ◽  
Catherine Maclachlan ◽  
Nigel J.M. Birdsall ◽  
...  

Recent advances in light microscopy allow individual biological macromolecules to be visualized in the plasma membrane and cytosol of live cells with nanometer precision and ∼10-ms time resolution. This allows new discoveries to be made because the location and kinetics of molecular interactions can be directly observed in situ without the inherent averaging of bulk measurements. To date, the majority of single-molecule imaging studies have been performed in either unicellular organisms or cultured, and often chemically fixed, mammalian cell lines. However, primary cell cultures and cell lines derived from multi-cellular organisms might exhibit different properties from cells in their native tissue environment, in particular regarding the structure and organization of the plasma membrane. Here, we describe a simple approach to image, localize, and track single fluorescently tagged membrane proteins in freshly prepared live tissue slices and demonstrate how this method can give information about the movement and localization of a G protein–coupled receptor in cardiac tissue slices. In principle, this experimental approach can be used to image the dynamics of single molecules at the plasma membrane of many different soft tissue samples and may be combined with other experimental techniques.


Sign in / Sign up

Export Citation Format

Share Document