scholarly journals A Novel Therapy-Resistance Transcriptional Signature Based on Single Cell Analysis in Kydar Clinical Trial

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 19-20
Author(s):  
Yael C Cohen ◽  
Mor Zada ◽  
Shuang-Yin Wang ◽  
Chamutal Bornstein ◽  
Eyal David ◽  
...  

Substantial progress in the treatment of Multiple Myeloma (MM) extends survival for many patients (Pts), though most Pts eventually relapse and become therapy refractory. Patients with induction resistant multiple myeloma (IRMM), either primary refractory or early (≤18 months) relapse, have a particularly compromised survival. New treatment strategies and molecular biomarkers for patient stratification and effective clinical care are needed. We previously reported outcomes of KYDAR (NCT04065789) single-arm prospective clinical trial, in which pts primary resistant to a bortezomib-based induction achieved high rates of durable responses when treated with carfilzomib/daratumumab/lenalidomide/dexamethasone (Cohen YC et al. Blood (2019) 134 (Suppl 1): 982). We applied comprehensive single cell RNA-seq analysis of plasma cells (PCs) obtained from longitudinal bone marrow aspirate samples, taken from KYDAR participants (n=34), compared to newly diagnosed MM Pts (n=15) and to healthy controls (n=11). We discovered a novel MM resistance signature differentially expressed between IRMM and newly diagnosed MM groups. This "gene module is enriched for several pathways that were perturbed in the IRMM Pts, including mitochondrial stress genes, the ER and UPR pathway, and the proteasome machinery. Furthermore, differential gene expression analysis between KYDAR responders and non-responders unveil potentially druggable escape mechanisms. These include upregulation of genes associated with immune regulation, proteasome, apoptotic and ER-stress pathways, e.g. Cyclophilin A (PPIA) creating an elaborated signature and potential target list of pathways and escape mechanisms from a highly potent quadruple therapy. This signature includes many novel genes which were not previously described in the context of MM (Fig 1A). Here we report external validation of this novel resistance signature among 908 MM Pts in the MMRF CoMMpass dataset. We found that our genes signature expression follows a normal distribution with no apparent sub-populations in naïve patients, but when examining Pts after multiple relapses, we detected gradient increase in our signature with a clear bi-model distribution (Fig. 1B). The prevalence of high module-1 expression was 5% in newly diagnosed Pts vs 14% in Pts in 3rd or subsequent relapse (p<0.001). Survival analysis on MMRF "module 1 high" (module 1 score > 200) Pts (n = 68) compared with the rest of the population (n = 711) revealed a striking hazard-ratio of 3.9 (2.22 - 6.87) with p-value = 4.57x10-17 (Fig 1C). Module-1 was highly predictive of treatment outcome in KYDAR trials, beyond FISH cytogenetics (Fig 1D). We hypothesized that PPIA may function as a protective resistance gene in MM malignant cells, by accelerating protein folding pathways and reducing stress associated to proteasome inhibitors. In order to test whether PPIA is merely a marker for highly resistant patients or has a causal role in MM resistance to proteasome inhibitors, we used Cyclosporine A (CsA), a known inhibitor of PPIA, in a series of in vitro experiments, to explore it's potential synergy with carfilzomib, a proteasome inhibitor, on RPMI-8226 and U266B MM cell lines, expressing high levels of PPIA. Using MTS proliferation assay, we found that the combined CsA and carfilzomib therapy was significantly more effective than carfilzomib alone. Apoptosis as measured by Propidium Iodide, DAPI and Annexin V FITC staining, was dramatically increased in the combination therapy setting compared to carfilzomib or CsA monotherapy (Fig 1E). In summary, our study defines a roadmap for combining single cell RNA-seq profiling with clinical trials. We reveal and externally-validate a novel transcriptional signature for therapy resistance. We show inhibition of PPIA, a potential target identified, by CsA, overcomes relative resistance of MM cell lines to carfilzomib. We anticipate that such studies will significantly improve the ability to define mechanism of action of treatment, molecularly characterize the Pts that may benefit from the treatment, and reveal potential novel targets. Disclosures Tadmor: AbbVie: Consultancy, Speakers Bureau; Janssen: Consultancy, Speakers Bureau; Takeda: Consultancy, Speakers Bureau; Sanofi: Consultancy, Speakers Bureau; Medison: Consultancy, Speakers Bureau; Neopharm: Consultancy, Speakers Bureau; 6. Novartis Israel Ltd., a company wholly owned by Novartis Pharma AG: Consultancy, Speakers Bureau.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2725-2725
Author(s):  
Yael C Cohen ◽  
Mor Zada ◽  
Shuang-Yin Wang ◽  
Ohad S. Bentur ◽  
Evgeni Chubar ◽  
...  

Abstract Selinexor is a novel, first-in-class oral selective inhibitor of nuclear export which blocks Exportin 1 (XPO1), forcing the nuclear retention and activation of tumor suppressor proteins, ultimately causing apoptosis in cancer cells. Selinexor has been approved for the treatment of patients with penta-refractory multiple myeloma (MM) who have received at least 4 prior therapies. We previously reported the discovery of a novel transcriptional signature and therapeutic targets for therapy resistant MM by comprehensive single cell RNA-seq analysis (scRNA-seq) of plasma cells (PCs) in patients with primary refractory MM (PRMM) enrolled in the KYDAR clinical trial (NCT04065789, carfilzomib Lenalidomide dexamethasone daratumumab for PRMM [Cohen YC, Nature Med, 2021]). Here we report scRNA-seq analysis of PCs from patients with advanced refractory MM (aRRMM) (n=21) enrolled in an ancillary sub-study of a prospective clinical trial (XPORT-MM-028, NCT04414475), treated with selinexor combined with dexamethasone (Xd, in penta-refractory MM n=7), or with bortezomib, dexamethasone (XVd, in triple-class refractory [TCR] MM n=9), 5 patients participated in the ancillary study only. Median age was 75 years (range: 60-87), 50% were male, median time since active MM diagnosis was 4.8 years (range: 1.3-11.1). All treated patients (N=16) had TCR MM and 7/16 treated patients had penta-refractory MM. Single cell clustering analysis showed a unique molecular signature for each myeloma patient's PCs (Fig 1A), while patient-level analyses revealed a distinct transcriptional signature in aRRMM compared with PRMM (Fig 1B). aRRMM was characterized by upregulation of several pathways, including heparin growth factor (HDGF), Rho-GTPases activator (ARHGEF2), H3.3 histone variant and Prothymosin Alpha (PTMA) (Fig 1C-D). PPIA expression, which we previously identified as a biomarker and synergistic target for carfilzomib resistance, was low among healthy donors' PCs, progressively increased along with malignant evolution of plasma cell dyscrasia, from newly diagnosed MM, through PRMM, and was the highest in aRRMM (Fig 1C). We observed strong down-regulation of CD38 likely a consequence of daratumumab treatment and relapse in earlier lines. Finally, we discovered differential expression of several genes between patients with MM refractory to versus non-refractory (achieving at least partial response by IMWG criteria or a progression free survival greater than 4 months) to a selinexor-regimen (Fig 1E), including up-regulation of XPOT, a tRNA exportin, and KPNB1 a nucleocytoplasmic transporter (Fig 1F-G). Protein-protein interaction enrichment analyses revealed mRNA splicing and capping as well as nucleocytoplasmic transport as up-regulated modules in the refractory patients potentially serving as a resistance mechanism for blockade of XPO1 mediated nuclear export by selinexor. In summary, our study defines a roadmap for combining single cell RNA-seq profiling with clinical trials to stratify patients according to their level of anti-MM drug resistance, to define new biomarkers for drug resistance that may support personalized therapeutic decisions and reveal potential novel targets. Figure 1 Figure 1. Disclosures Cohen: Karyopharm: Research Funding; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; GSK: Consultancy, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; neopharm / promedico: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; takeda: Consultancy, Honoraria, Research Funding, Speakers Bureau. Bentur: Karyopharm Therapeutics: Current Employment, Current equity holder in publicly-traded company. Stemer: AbbVie: Consultancy. Avivi: Novartis: Speakers Bureau; Kite, a Gilead Company: Speakers Bureau. Amit: Neogene therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees; CELLINK: Consultancy, Membership on an entity's Board of Directors or advisory committees; Maruho Co., Ltd: Consultancy, Membership on an entity's Board of Directors or advisory committees; Merck KGaA: Consultancy, Membership on an entity's Board of Directors or advisory committees; Roche Immunology: Consultancy, Membership on an entity's Board of Directors or advisory committees; Karophram: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding.


2020 ◽  
Author(s):  
Viacheslav Mylka ◽  
Jeroen Aerts ◽  
Irina Matetovici ◽  
Suresh Poovathingal ◽  
Niels Vandamme ◽  
...  

ABSTRACTMultiplexing of samples in single-cell RNA-seq studies allows significant reduction of experimental costs, straightforward identification of doublets, increased cell throughput, and reduction of sample-specific batch effects. Recently published multiplexing techniques using oligo-conjugated antibodies or - lipids allow barcoding sample-specific cells, a process called ‘hashing’. Here, we compare the hashing performance of TotalSeq-A and -C antibodies, custom synthesized lipids and MULTI-seq lipid hashes in four cell lines, both for single-cell RNA-seq and single-nucleus RNA-seq. Hashing efficiency was evaluated using the intrinsic genetic variation of the cell lines. Benchmarking of different hashing strategies and computational pipelines indicates that correct demultiplexing can be achieved with both lipid- and antibody-hashed human cells and nuclei, with MULTISeqDemux as the preferred demultiplexing function and antibody-based hashing as the most efficient protocol on cells. Antibody hashing was further evaluated on clinical samples using PBMCs from healthy and SARS-CoV-2 infected patients, where we demonstrate a more affordable approach for large single-cell sequencing clinical studies, while simultaneously reducing batch effects.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 362-362
Author(s):  
Jianbiao Zhou ◽  
Yunlu Jia ◽  
Tze King Tan ◽  
Tae-Hoon Chung ◽  
Takaomi Sanda ◽  
...  

Background: Multiple myeloma (MM) is an aggressive neoplastic plasma cell cancer characterized by diversely cytogenetic abnormalities. MM can be divided into subtypes with immunoglobulin heavy chain (IGH) gene translocations involving CCND1-3, FGFR3/MMSET, MAFs and hyperdiploid myeloma containing trisomies of several odd numbered chromosomes 3, 5, 7, 9, 11, 15, 19, and 21. Although several new drugs have been introduced into clinic, treatment for MM patients remains challenge and refractory/resistant to therapy is often seen. Thus, a better understanding of the molecular pathogenesis of MM can lead to generate new prognostic classification and identify new therapeutic targets. Super-enhancers (SEs) are defined as large clusters of cis-acting enhancers, marked by high level bindings of acetylation of histone H3 lysine 27 (H3K27ac) and mediator complex. SEs have been shown to control genes for maintaining cellular identity and also key tumor drivers in various malignancies. Methods: H3K27Ac ChIP-seq and RNA-seq were performed on primary MM patient samples, MM cell lines. Normal plasma cells and lymphoma cell lines were served as controls. We systematically compared SEs and their associated genes of normal and cancerous tissue. THZ1, a CDK7 inhibitor, was used to efficiently down-regulate SE-associated genes. Combinatory analysis of THZ1-sensitive and SE-associated gene revealed a number of promising MM oncogenes. CRISPR/Cas9 technology and ectopic expression experiments in conjunction with cellular functional assays were performed to determine the effects of candidate SE-genes on MM cells. Circularized chromatin conformation capture followed by sequencing (4C-seq) was applied to explore the direct contact of SE and promoter. Results: SE analysis uncovered some cell lineage-specific transcription factors (TFs) and known oncogenes in MM. Several key TFs, including IRF4, PRDM1, MYC and XBP1, were identified in most MM samples, confirming the origin of MM cells. These data reinforce the concept that SE establishment is a key component of MM biology. The acquisition of SEs around oncogene drivers is widely observed during tumorigenesis. ST3GAL6 and ADM were two known oncogenic drivers in myeloma cells, which were associated with super-enhancers in all MM samples but not in normal plasma cell and lymphoma cells. We also found SE constituents for multiple subtype-specific key oncogenes such as CCND1 in t(11;14) cells, C-MAF in t(14;16) cells, and NSD2 and FGFR3 in t(4;14) cells. Furthermore, THZ1 showed prominent anti-neoplastic effect against MM cells. SE-associated genes were more sensitive to THZ1 compared with those genes associated with typical enhancers (TEs). By overlapping THZ1-sensitve gene with SE-associated genes, we identified a number of novel MM oncogenes, including MAGI2, EDEM3, HJURP, LAMP5, MBD1 and UCK2 as a potential druggable kinase. The expression level of MAGI2 and HJURP confers poor prognosis in several MM datasets. MAGI2 silencing in MM cells decreased cell proliferation and induced apoptosis. qRT-PCR and Western blot analysis confirmed the overexpression of HJURP in t(4;14) cells relative to non-t(4;14) MM cells. Furthermore, 4C-seq analysis revealed the physical interaction between HJURP-SE and promoter and THZ1 treatment diminished this interaction. Motif search at SE constituents revealed a highly significant enrichment of NSD2 recognition. Significant reduction of NSD2 binding at HJURP-SE region was observed in KMS11 infected with NSD2-specific shRNAs. Interestingly, blocking SE sites by CRISPR/Cas9i or silencing HJURP by shRNA led to decreased HJURP expression and cell apoptosis, whereas overexpression of this gene promoted cell growth. Taken together, our data demonstrated that HJURP is a novel SE-associated oncogene in t(4;14) MM. Conclusions: Our integrative approaches by combing H3K27Ac ChIP-seq, RNA-seq and THZ1-sensitive transcript defined the landscape of SE and identified SE-associated novel oncogenes, as well as lineage-specific TFs in MM. Furthermore, we also revealed subtype-specific SE-driving oncogenic program in MM. Taken together, these results not provide novel insight into the MM pathology, but also offer novel, potential therapeutic targets, such as MAGI2, and HJURP for the treatment of MM patients. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4462-4462
Author(s):  
Xiu Ly Song ◽  
Raphaël Szalat ◽  
Alexis Talbot ◽  
HaiVu Nguyen ◽  
Mehmet K. Samur ◽  
...  

Abstract In Multiple Myeloma (MM), the t(4;14) translocation is associated with a poor outcome. However, beside this translocation, the genetic events which determine the adverse evolution of the disease and the resistance to treatments remain elusive. In this study we performed whole exome or RNA sequencing analysis of samples from 65 newly diagnosed t(4;14) MM. We found that NRAS, KRAS, MAPK and FGFR3 are frequently mutated (12%, 9%, 13.8%, and 20% respectively). Overall, the FGFR3/RAS/BRAF/MAPK genes were mutated in 36 cases (54%). There was a negative correlation between mutations in FGFR3 and those occurring in NRAS, KRAS and BRAF as expected from the mutually exclusive occurrence of mutations in these genes. In addition to alterations in TP53 and DIS3, we found marked elevated frequency of mutations in PRKD2 (10.7%), ATM/ATR (10.7%) and MYCBP2 (7.6%), reduced frequency in FAM46C (1.5%) and no mutation in TRAF3 and CCND1. Mutations in ATM/ATR were strongly associated with the MB4-2 breakpoint (Bp) (p = 1.62 10-4) and significantly correlated with mutations affecting genes coding for members of the MAPK family. We observed a positive correlation between non-silent mutations in PRKD2 and the MB4-1 or MB4-3 Bp (p = 1.3 10-2). Of note, PRKD2 mutations are exclusively found in 3 t(4;14) MM cell lines and among the 84 MM sequenced by Bolli et al. (1), none of the non t(4;14) patient were mutated in PRKD2, indicating that this genetic lesion is associated with t(4;14) MM. In the NCI-H929 t(4;14) MM cell line, which is mutated for PRKD2, encoding the PKD2 serine/threonine kinase, we observed elevated levels of phosphorylated PKD2. Furthermore, inhibition of PKD, decreased PKD2 phosphorylation and triggered reduced proliferation and apoptosis of MM cell lines and fresh plasma cells from patients in vitro. These results define a specific mutational landscape for t(4;14) MM and identify PKD2 as a potential therapeutic target in MM patients. Altogether, these results define a specific mutational landscape for t(4;14) MM and identify PKD2 as a potential therapeutic target in MM patients. Reference 1. Bolli, N., Avet-Loiseau, H., Wedge, D.C., Van Loo, P., Alexandrov, L.B., Martincorena, I., Dawson, K.J., Iorio, F., Nik-Zainal, S., Bignell, G.R., et al. (2014). Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun 5, 2997. Disclosures Munshi: Janssen: Consultancy; Takeda: Consultancy; Celgene: Consultancy; Amgen: Consultancy; Merck: Consultancy; Pfizer: Consultancy; Oncopep: Patents & Royalties.


2020 ◽  
Author(s):  
Naim Al Mahi ◽  
Erik Y. Zhang ◽  
Susan Sherman ◽  
Jane J. Yu ◽  
Mario Medvedovic

ABSTRACTLymphangioleiomyomatosis (LAM) is a rare pulmonary disease affecting women of childbearing age that is characterized by the aberrant proliferation of smooth-muscle (SM)-like cells and emphysema-like lung remodeling. In LAM, mutations in TSC1 or TSC2 genes results in the activation of the mechanistic target of rapamycin complex 1 (mTORC1) and thus sirolimus, an mTORC1 inhibitor, has been approved by FDA to treat LAM patients. Sirolimus stabilizes lung function and improves symptoms. However, the disease recurs with discontinuation of the drug, potentially because of the sirolimus-induced refractoriness of the LAM cells. Therefore, there is a critical need to identify remission inducing cytocidal treatments for LAM. Recently released Library of Integrated Network-based Cellular Signatures (LINCS) L1000 transcriptional signatures of chemical perturbations has opened new avenues to study cellular responses to existing drugs and new bioactive compounds. Connecting transcriptional signature of a disease to these chemical perturbation signatures to identify bioactive chemicals that can “revert” the disease signatures can lead to novel drug discovery. We developed methods for constructing disease transcriptional signatures and performing connectivity analysis using single cell RNA-seq data. The methods were applied in the analysis of scRNA-seq data of naïve and sirolimus-treated LAM cells. The single cell connectivity analyses implicated mTORC1 inhibitors as capable of reverting the LAM transcriptional signatures while the corresponding standard bulk analysis did not. This indicates the importance of using single cell analysis in constructing disease signatures. The analysis also implicated other classes of drugs, CDK, MEK/MAPK and EGFR/JAK inhibitors, as potential therapeutic agents for LAM.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3395-3395
Author(s):  
Marcin Majka ◽  
Artur Jurczyszyn ◽  
Anna Zebzda ◽  
Wojciech Czogala ◽  
Ewa Lesko ◽  
...  

Abstract Despite progress in the treatment of Multiple Myeloma (MM), it is still an incurable disease with average survival of 3–4 years. Because MM is often resistant to conventional therapies, new treatment strategies are necessary. The presence of elevated HGF (Hepatocytic Grow Factor) expression has been well documented in multiple myeloma. The c-met oncogene has been shown to be present in MM cell lines at the mRNA and protein level. Some data suggested that this axis could be responsible for proliferation and inhibition of apoptosis in MM cells. In this study we have analyzed c-met expression in 15 patients with (MM) before and after treatment. Seven of these pts responded well and eight pts responded poorly to the employed therapy. All 15 pts were c-met positive before therapy. Bone marrow cellularity of patients who responded well was 76% before (range: 10% – 100%) and 46% after treatment (range: 40% – 60%). In this group plasmocyte infiltration of bone marrow consisted of 59% before (range: 10% – 80%) and 9% after chemotherapy (range: 0% – 20%). Five of them had undetectable c-met positive cells among bone marrow cells after treatment. In the group of poor responders cellularity of bone marrow was 40% (range: 20% – 70%) before treatment and 46% (range: 20% – 70%) after therapy. Plasmocytes consisted of 20% (range: 10% – 50%) of bone marrow cells before and 44% (range: 10% – 90%) after treatment. All patients in this group had cells positive for c-met receptor after therapeutic regiment. This results suggested that c-met-HGF axis might be a good target for alternative therapy in MM. We looked for potential therapeutics that interferes with this axis and we found that geldanamycin (GA) has been shown to decrease expression of c-met at the protein level in several different cell types. Using inhibitors that belongs to geldanamycin family (GA, 17AAG and 17DMAG) we treated MM cell lines and primary sample. We found that these molecules strongly inhibited expression of c-met in both MM cell lines and patients sample as assessed by western blot analysis. We also tested the influence of these inhibitors on proliferation of MM cells. We found that 100nM dose of GA and 17DMAG inhibited growth of MM cell lines by 80% and 100nM dose of 17AAG inhibited growth of these cells by 20%. Primary cells were more resistant to treatment but we still obtained 30% inhibition with GA and 17DMAG. 17AAG was ineffective and proliferation decreased by less than 10%. Grow inhibition was probably not only due to c-met-HGF axis blockade because these molecules also inhibit other proteins (AKT, RAF). In our experiments we have shown that the level of c-met expression correlates with response to therapy. Patients who respond well had substantially decreased number of c-met positive plasmocytes after chemotherapy in comparison to poor responders. We have also showed that drugs that block c-met-HGF axis could be used in treatment of MM. These drugs could potentially inhibit cells proliferation, increase apoptosis and disrupt MM cells interaction with bone marrow environment. Based on these data we postulate that the c-met receptor is a potential target for MM therapy especially in patients who do not respond to the first line of treatment.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2741-2741
Author(s):  
Jie Cai ◽  
Xian Jin Lian ◽  
Christopher von Roretz ◽  
Chaim Shustik ◽  
Imed Gallouzi ◽  
...  

Abstract Abstract 2741 Poster Board II-717 Bortezomib (Velcade ™, PS-341, BTZ) is a boronate dipeptide that reversibly inhibits the 26S proteasome, which is essential for the breakdown of ubiquitinated proteins and the regulation of normal cellular homeostasis. The activity of BTZ in treatment of newly diagnosed and refractory/relapsed multiple myeloma may be limited by the development of chemoresistance, the mechanisms of which are poorly understood. To investigate the molecular basis of Bortezomib resistance, BTZ-resistant (BTZr) cell lines were generated by stepwise selection procedures from HeLa, CCRF-CEM, and 4 multiple myeloma cells lines (8226S, U266, H929, and MM.1S), respectively. These BTZ-selected cell lines displayed varying degrees of elevated resistance (2 to 50 fold) to clinically relevant concentrations of BTZ. In addition, while most of the BTZr cells showed cross resistance to several other proteasome inhibitors (PIs), including MG-132 and Epoxomicin, they remained as sensitive to other chemotherapeutic drugs, such as anthracyclines, vinkalkaloids and etoposide, as their parental cells. The proteasome activity profiles are distinct among the cell lines. All parental cell lines displayed varying levels of chymotrypsin-like (CT-L) activity, which is the primary target of BTZ. Most BTZr lines showed markedly decreased CT-L activity, with a few exceptions. Moreover, the observed CT-L activity in all cell lines can be inhibited directly by BTZ and other PIs. In contrast, very low levels of caspase-like or post-glutamyl peptide hydrolyzing (PGPH) proteasome activity were detected in all cell lines. BTZ resistance in HeLa/BTZ cells was closely associated with increased resistance to PI-induced apoptosis, as shown by reduced number of Annexin V-stained cells and by delayed activation/cleavage of apoptosis proteins, such as Caspase-3 and Poly(ADP-ribose) Polymerase (PARP). Furthermore, the resistance to BTZ affected the mechanisms of cell stress responses. As for the parental HeLa cells, HeLa/BTZr cells retained the ability to form, in response to PI treatment, pro-survival foci in the cytoplasm known as stress granules (SGs). However, the drug concentrations required to induce SG formation in HeLa/BTZr cells are much higher (∼4 fold) than those for the parental HeLa, suggesting the development of stress-coping mechanisms in these BTZr cells. Gene expression profiling studies are in progress to identify transcriptomes individually or generally associated with BTZ resistance in these cell lines. Further characterization of these phenotypically similar, yet mechanistically distinct BTZr cell lines may elucidate diverse mechanisms of drug resistance to Bortezomib and other proteasome inhibitors. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3014-3014
Author(s):  
Giada Bianchi ◽  
Vijay G. Ramakrishnan ◽  
Teresa Kimlinger ◽  
Jessica Haug ◽  
S. Vincent Rajkumar ◽  
...  

Abstract Abstract 3014 Background: Proteasome inhibitors have proven particularly effective in treatment of multiple myeloma, the second most frequent hematologic malignancy in the western world. Bortezomib, the first in class proteasome inhibitor in clinical use, was first approved in 2003 via fast FDA track, given the remarkable activity shown during phase II clinical trials. Nevertheless, more than 50% of multiple myeloma patients did not respond to single agent bortezomib when administered as second line agent. Moreover, bortezomib is only available for intravenous administration, representing a cumbersome therapy for patients, and its use is limited by significant toxicities (especially peripheral neuropathy). MLN9708 (Millennium Pharmaceuticals, Inc.), an investigational orally available, small molecule, is a potent, specific and reversible inhibitor of the 20S proteasome. It is currently under clinical investigation for the treatment of hematologic and non-hematologic malignancies. Upon exposure to aqueous solutions or plasma, MLN9708 rapidly hydrolyzes to MLN2238, the biologically active form, and MLN2238 was used for all of the preclinical studies reported here. In vitro biochemistry studies have shown that MLN2238 has a faster dissociation rate from the proteasome compared to bortezomib, and in vivo studies of MLN2238 have shown antitumor activity in a broader range of tumor xenografts when compared to bortezomib. Given these encouraging preclinical results, we set to investigate the anti-myeloma activity of MLN2238 in vitro. Results: MLN2238 proved to have anti-proliferative and pro-apoptotic activity against a broad range of MM cell lines with EC50 at 24 hours ranging between 10 and 50 nM, even in relatively resistant MM cell lines (OPM2, DOX6, RPMI, etc.). In MM.1S cells, induction of apoptosis was time and dose dependent and related to activation of both caspase 8 and 9. When compared to MM.1S treated for 24 hours with EC50 dose of bortezomib, treatment with EC50 dose of MLN2238 resulted in the same extent of caspases cleavage occurring at an earlier time point (8-12 hours), possibly suggesting more rapid onset and/or irreversibility of apoptosis in cells treated with MLN2238. Treatment with MLN2238 was associated with early, but persistent induction of endoplasmic reticulum (ER) stress with BiP being induced 2–4 hours after treatment with EC50 dose and gradually increasing over time. While bortezomib has been associated with early induction and late decrease in proteins involved in ER stress, MLN2238 appears to induce a persistent rise in these factors, suggesting either more sustained proteasome blockade with stabilization of proteasome substrates or de-novo induction of unfolded protein response (UPR) genes. MLN2238 also proved effective in reducing phosphorylation of ERK1-2 with no overall alteration in the total ERK level, thus accounting for the observed reduction in proliferation upon treatment. Preliminary data indicate potential for additive and synergistic combination with widely used drugs, including doxorubicin and dexamethasone. Conclusion: While further clinical data are needed to establish the effectiveness of MLN2238 in the treatment of multiple myeloma, these preliminary nonclinical data, together with the favorable biochemical and pharmacokinetic properties, including oral bioavailability, make the investigational agent MLN9708 an appealing candidate for treatment of multiple myeloma. Further in vitro data could help establish whether a difference in the apoptotic mechanisms exist between MLN2238 and other proteasome inhibitors, primarily bortezomib, and could also help inform combination treatment approaches aimed at increasing effectiveness, overcoming bortezomib resistance and decreasing toxicity. Disclosures: Kumar: Celgene: Consultancy, Research Funding; Millennium: Research Funding; Merck: Consultancy, Research Funding; Novartis: Research Funding; Genzyme: Consultancy, Research Funding; Cephalon: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3121-3121
Author(s):  
Antonia Cagnetta ◽  
Michele Cea ◽  
Sophia Adamia ◽  
Yu-Tzu Tai ◽  
Teru Hideshima ◽  
...  

Abstract Background Alternative splicing (AS) is a normal epigenetic event with a critical role in the regulation of gene expression. Previous studies showed increased AS in Multiple Myeloma (MM) cells, suggesting the need to assess both expression level of genes and post translational modifications, mediating overall gene function. The NAD-dependent deacetylases Sirtuins (SIRTs), mammalian homologues of the yeast Sir2, modulate various biological processes including metabolism, cell survival, development, chromatin dynamics, or DNA repair. Recent microarray profiling data using newly diagnosed patients with MM, suggests clinical relevance of such deacetylases since their level predicts for both progression free and overall survival. Among SIRTs family membersSIRT-5, SIRT-6 and SIRT-7 transcript levels positively correlated with disease progression (from MGUS to active MM). These studies provide the rationale for further examining the biological processes including epigenetic changes, mutations, or AS events that contribute to aberrant expression of SIRTs in MM. Methods Purified RNA from MM cell lines, newly diagnosed MM patient cells, as well as peripheral blood mononuclear cells (PBMCs) from normal healthy donors was subjected to SIRT expression analysis. Specifically, SIRTs-specific primers were developed and optimized using standard RT-PCR conditions. RNA integrity was confirmed using Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as an endogenous control. Aberrant splicing of SIRT-5, SIRT-6, and SIRT-7 was confirmed by cloning and sequencing, followed by analysis of their expression patterns in MM patients versus normal PBMCs. Results We found that SIRTs genes are frequently miss-spliced in MM patients. To our knowledge, this is the first report showing SIRTs miss-splicing event in MM. Through cloning and sequencing analysis, we identified novel spliced isoforms of SIRT-5, SIRT-6 and SIRT-7; these occurred as a result of aberrant AS within exon-12, exon-4 and and exon-5, respectively. Specifically, exon skipping was noted in SIRT-6 and SIRT-7 variants, via cryptic 5 prime or 3 prime splice sites on exon 12 and/or through partial retention of an intron created SIRT-5 variants. The novel spliced forms were widely expressed in MM cell lines and primary cells, without significance occurrence in normal PBMCs. Our preliminary data show that even though these novel isoforms exhibit reduced deacetylase activity versus full-length variants, this characteristic may impart distinct functional outcome. Finally, in support of above studies, our analysis of MM patient samples suggest that AS among SIRTs is associated with poor clinical outcome in MM patients. Conclusion In the current study, we have identified novel transcript variants of SIRT-5, SIRT-6 and SIRT-7 in MM cells. These aberrant isoforms allow for generating transcripts that encode for dysfunctional proteins, which in turn, may contribute to the genetic heterogeneity in MM. Ongoing studies are delineating the function of these newly identified splice variants of SIRTs and their association with MM progression. Overall, our studies will provide basis for utilizing SIRTs variants as prognostic markers and/or as novel therapeutic targets in MM. Disclosures: Hideshima: Acetylon Pharmaceuticals: Consultancy. Chauhan:Vivolux: Consultancy.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3820-3820
Author(s):  
Yi Tao ◽  
Zhimin Gu ◽  
Ye Yang ◽  
Hongwei Xu ◽  
Xiaojing Hu ◽  
...  

Abstract Background We have recently established that increased chromosomal instability (CIN) signature is linked to drug resistance and poor outcome in multiple myeloma (MM) and other cancers. Thyroid Hormone Receptor Interactor 13 (Trip13), one of the 56 drug-resistant genes, plays a key role in chromosomal recombination and structure development during meiosis and has been reported to be increased in some malignancies including lung cancer, prostate cancer and breast cancer. In this study, we investigated how important Trip13 is in myelomagenesis and progression. Materials and Methods Gene expression profiling (GEP) was analyzed on plasma cells from 22 healthy donors, 44 patients with monoclonal gammopathy of undetermined significance (MGUS), 351 patients with newly diagnosed multiple myeloma, and 9 human myeloma cell lines, as well as on 36 sequential samples at diagnosis, pre-1st, pre-2nd and post-2nd autologous stem cell transplantation (ASCT). Over-expression and knock-down experiments of Trip13 were performed on myeloma cell lines by lentivirus transfection. Cell viability was assessed by trypan exclusion assay. Western blots were used to detect the expression of Trip13, P31 comet, caspase-8, caspase-9, caspase-3 and PARP, and checkpoint related proteins MAD2 and CDC20 in Trip13 overexpressed or Trip13 shRNA-transfected myeloma cells. Results Sequential GEP samples showed that Trip13 expression increased in 8 of 9 patients after chemotherapy and ASCT compared to the samples at diagnosis strongly suggesting that increased Trip13 is associated with drug resistance. Trip13 was already significantly increased in MGUS patients, newly diagnosed MM patients and MM cell lines compared with normal plasma cells. Furthermore, Trip13 was significantly higher in high-risk MMs than in low-risk MMs and increased Trip13 was linked to an inferior event-free survival (EFS) (p<0.01) and overall survival (OS) (p<0.01) in 351 newly diagnosed MMs. In contrast, the Trip13-interacting gene P31 comet was down-regulated in high-risk MMs and high expression of P31 was associated with good outcome. Interestingly, patients with high Trip13 and low P31 comet have the worst outcome compared to patients with only one of these, suggesting the interaction of Trip 13 and p31 has a synergistic effect on MM progression. Transfection of Trip13 into ARP1 and OCI-My5 cells significantly increased cell proliferation, while knock-down Trip13 in OCI-My5, H929, RPMI8226 cells inhibited cell growth and induced MM cell apoptosis with increases of cleaved caspase-8, caspase-9, caspase-3 and PARP. Mechanistic studies showed that Trip13 over-expression decreased P31comet and MAD2 expression by western blotting, but increased CDC20. Conclusions The association of increased Trip13 and decreased p31 is a good biomarker for MM drug resistance and poor prognosis. Our results also show Trip13 and P31 comet could be potential targets to overcome drug resistance in MM. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document