scholarly journals A Novel BCL2-Driven Compound Mutant Mouse Model for In Vivo Research on BH3 Mimetics

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 39-39
Author(s):  
Ismini Halmer ◽  
Alexandra da Palma Guerreiro ◽  
Laura Beckmann ◽  
Christian Reinhardt ◽  
Hamid Kashkar ◽  
...  

Introduction: Eµ-TCL1-transgenic mouse models are often applied to discover and observe the development and kinetic of chronic lymphocytic leukaemia (CLL), as they develop diseases most similar to human CLL with a very high penetrance. To gain a better understanding on new therapy options and their effect on disease regression it is very important to observe therapy response, overall survival and symptoms during treatment of the disease not only in vitro but also in vivo in a suitable mouse model. However, application of BH3 mimetics like venetoclax is limited in the classical Eµ-TCL1 mouse model, since these mice are resistant towards venetoclax treatment. Therefore, we have generated a novel mouse model with Eµ-TCL1 as back bone and conditional overexpression of BCL2. Methods and results: We established a new mouse model (TBC) by crossbreeding mice expressing Eµ-TCL1tg/wtwith mice containing a B-cell specific conditional Bcl-2Rosa26/wt; Cd19CreCre/wtoverexpression and compared the disease kinetics to classical Eµ-TCL1 mice and to BC mice. TBC animals exhibit a severe leukocytosis at very early stages of disease development (12 weeks; mean 96.000/µl) in comparison to TC (15.100/µl) and BC (81.900/µl) mice. TBC mice develop CD23low/CD21neg leukemic B cells as they are known from TC mice with CD19+/CD5+ expression. Indeed, these mice show a significantly shortened overall survival of ~300 days (n=43) compared to TC mice (n=106; ~350 days; p<0.001) and BC mice (n=28; ~410 days; p<0.001) with severe clinical symptoms such as splenomegaly and cachexia. Strikingly, in contrast classical TC mice, which are resistant towards venetoclax, isolated B-cells of TBC mice are 10-times more sensitive towards venetoclax in vitro (0,02 µM) and can also be killed by the MCL1 inhibitors in nanomolar ranges, but not by BCL-xl inhibitors (>2µM). Based on our in vitro data, we have treated TBC mice with venetoclax and observed an early and dramatic drop of leukocytes to normal ranges within the first two weeks of treatment. Leukocyte reduction lasted for the whole period of treatment. When investigating the spleens after sacrificing the mice they showed high amounts of dead cells inside the spleens, indicating that venetoclax was also efficient in lymphatic tissues as we know it from human trials. Conclusions: Autochthonous mouse models on which BH3 mimetics can be tested are rare. In our mouse model apoptosis screening in vitro we can show good results for BH3 mimetics with a high sensitivity already in low dosing. The BCL2-driven TCL1 mouse model enables the investigation of treatment with venetoclax in vivo to gain a better understanding of this frequently on patients applied therapy. Moreover, this model will help us to test other drugs (like MCL1 inhibitors) in combination with venetoclax to identify synergistic drugs in vivo in a timely manner. Furthermore, this model will offer us the opportunity to identify treatment strategies to overcome venetoclax resistance in vivo. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 188-188
Author(s):  
Kyle A Beckwith ◽  
Frank W Frissora ◽  
Matthew R Stefanovski ◽  
Jutta Deckert ◽  
Carlo M Croce ◽  
...  

Abstract Abstract 188 BACKGROUND: Introduction of the anti-CD20 antibody rituximab has led to remarkable progress in the development of targeted therapies for CLL and other B-cell malignancies. Despite prolonging patient survival, therapies targeting CD20 have not been curative. In recent years, alternative targets for therapeutic antibodies have emerged. One of the most promising targets has been CD37, which is highly expressed on malignant B-cells in chronic lymphocytic leukemia (CLL) and non-Hodgkin's lymphoma. The recent interest in this target has led to the generation of novel anti-CD37 therapeutics that could benefit from more extensive preclinical evaluation. However, preclinical development of these agents has been limited by the absence of appropriate leukemia animal models that provide targets expressing human CD37 (hCD37). Here we describe the development and characterization of a transgenic mouse where CLL-like leukemic B-cells express hCD37 and aggressively transplant into syngenic hosts. We demonstrate the utility of this unique mouse model by evaluating the in vivo efficacy of IMGN529, a novel antibody-drug conjugate targeting hCD37 that consists of the CD37-targeting K7153A antibody linked to the maytansinoid DM1 via the thioether SMCC linker. METHODS: The hCD37 transgenic mouse (hCD37-Tg) founder lines were generated by conventional methodology at the OSU Transgenic Facility. B-cell specific expression of hCD37 is driven by immunoglobulin heavy chain promoter and Ig-μ enhancer elements. Founder lines were evaluated by RT-PCR and flow cytometry to confirm RNA and protein expression, respectively. These lines were then crossed with the EμTCL1 mouse model of CLL to generate hCD37xTCL1 mice that develop CD5+CD19+hCD37+ leukemia. For in vivo studies, splenocytes from a leukemic hCD37xTCL1 donor were injected i.v. into healthy hCD37-Tg mice. Mice were randomly assigned to the following treatment groups (n=8–10 per group): IMGN529 conjugate, its K7153A antibody component, or negative controls (isotype antibody-DM1 conjugate or trastuzumab). Upon diagnosis of leukemia, a 10 mg/kg dose was administered i.p. and repeat doses were given 2 times per week for 3 weeks (70 mg/kg total). Peripheral blood disease was monitored by flow cytometry, using counting beads to obtain the absolute number of leukemic CD5+CD19+ B-cells. CD37 expression levels were determined by quantitative flow cytometry. In vitro cytotoxicity was evaluated after 24 hour incubation by flow cytometry with Annexin V and propidium iodide staining. RESULTS: IMGN529 and its K7153A antibody component demonstrated comparable in vitro activity against freshly isolated human CLL cells even in the absence of cross-linking agents (mean IMGN529 cytotoxicity=50.04% vs. 48.85% for K7153A; p=0.175; n=9). Both compounds also demonstrated cytotoxicity against hCD37 Tg B-cells ex vivo in a cross-linking dependent manner, and while expression of hCD37 in hCD37-Tg animals was B-cell specific, the expression levels were substantially lower than those observed in human CLL cells. In vivo studies with transferred hCD37xTCL1 splenocytes demonstrated rapid and complete depletion of CD5+CD19+ leukemic B-cells in response to IMGN529 conjugate, but not K7153A antibody treatment. After 1 week of IMGN529 treatment, peripheral blood leukemia was nearly undetectable and previously detected massive splenomegaly was no longer palpable. In contrast, leukemic counts and spleen sizes continued to increase in control cohorts. CONCLUSIONS: In summary, our group has generated a mouse model that develops a transplantable CD5+CD19+ leukemia expressing hCD37. We demonstrate the utility of this model for both in vitro and in vivo testing of therapeutics targeting hCD37. In addition, preclinical mouse studies expose the robust anti-leukemic effects of IMGN529 in this in vivo model of aggressive B-cell malignancy, despite the relatively low expression of hCD37 on the leukemic B-cells. Our engraftment model shows that IMGN529 is capable of eliminating widespread and highly proliferative mouse leukemia by a mechanism that is both CD37 antigen and conjugate dependent. Therefore, we propose that this novel therapeutic may also exhibit substantial efficacy in a wide range of human B-cell malignancies, even those with relatively low CD37 expression. [This work was supported by NIH (NM, JCB), LLS (NM, JCB) and Pelotonia (KAB)]. Disclosures: Deckert: ImmunoGen Inc.: Employment.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1506-1506
Author(s):  
Marika Masselli ◽  
Serena Pillozzi ◽  
Massimo D'Amico ◽  
Luca Gasparoli ◽  
Olivia Crociani ◽  
...  

Abstract Abstract 1506 Although cure rates for children with acute lymphoblastic leukemia (ALL), the most common pediatric malignancy, have markedly improved over the last two decades, chemotherapy resistance remains a major obstacle to successful treatment in a significant proportion of patients (Pui CH et al. N Engl J Med., 360:2730–2741, 2009). Increasing evidence indicates that bone marrow mesenchymal cells (MSCs) contribute to generate drug resistance in leukemic cells (Konopleva M et al., Leukemia, 16:1713–1724, 2002). We contributed to this topic, describing a novel mechanism through which MSCs protect leukemic cells from chemotherapy (Pillozzi S. et al., Blood, 117:902–914, 2011.). This protection depends on the formation of a macromolecular membrane complex, on the plasma membrane of leukemic cells, the major players being i) the human ether-a-gò-gò-related gene 1 (hERG1) K+ channel, ii) the β1integrin subunit and iii) the SDF-1α receptor CXCR4. In leukemic blasts, the formation of this protein complex activates both the ERK 1/2 MAP kinases and the PI3K/Akt signalling pathways triggering antiapoptotic effects. hERG1 exerts a pivotal role in the complex, as clearly indicated by the effect of hERG1 inhibitors to abrogate MSCs protection against chemotherapeutic drugs. Indeed, E4031, a class III antiarrhythmic that specifically blocks hERG1, enhances the cytotoxicity of drugs commonly used to treat leukemia, both in vitro and in vivo. The latter was tested in a human ALL mouse model, consisting of NOD/SCID mice injected with REH cells, which are relatively resistant to corticosteroids. Mice were treated for 2 weeks with dexamethasone, E4031, or both. Treatment with dexamethasone and E4031 in combination nearly abolished bone marrow engraftment while producing marked apoptosis, and strongly reducing the proportion of leukemic cells in peripheral blood and leukemia infiltration of extramedullary sites. These effects were significantly superior to those obtained by treatment with either dexamethasone alone or E4031 alone. This model corroborated the idea that hERG1 blockers significantly increase the rate of leukemic cell apoptosis in bone marrow and reduced leukemic infiltration of peripheral organs. From a therapeutic viewpoint, to develop a pharmacological strategy based on hERG1 targeting we must consider to circumvent the side effects exerted by hERG1 blockers. Indeed, hERG1 blockers are known to retard the cardiac repolarization, thus lengthening the electrocardiographic QT interval, an effect that in some cases leads to life threatening ventricular arrhythmias (torsades de points). On the whole, it is mandatory to design and test non-cardiotoxic hERG1 blockers as a new strategy to overcome chemoresistance in ALL. On these bases, we tested compounds with potent anti-hERG1 effects, besides E4031, but devoid of cardiotoxicity (e.g. non-torsadogenic hERG1 blockers). Such compounds comprise erythromycin, sertindole and CD160130 (a newly developed drug by BlackSwanPharma GmbH, Leipzig, Germany). We found that such compounds exert a strong anti-leukemic activity both in vitro and in vivo, in the ALL mouse model described above. This is the first study describing the chemotherapeutic effects of non-torsadogenic hERG1 blockers in mouse models of human ALL. This work was supported by grants from the Associazione Genitori contro le Leucemie e Tumori Infantili Noi per Voi, Associazione Italiana per la Ricerca sul Cancro (AIRC) and Istituto Toscano Tumori. Disclosures: No relevant conflicts of interest to declare.


mSphere ◽  
2018 ◽  
Vol 3 (1) ◽  
Author(s):  
James Duehr ◽  
Silviana Lee ◽  
Gursewak Singh ◽  
Gregory A. Foster ◽  
David Krysztof ◽  
...  

ABSTRACT Recent reports in the scientific literature have suggested that anti-dengue virus (DENV) and anti-West Nile virus (WNV) immunity exacerbates Zika virus (ZIKV) pathogenesis in vitro and in vivo in mouse models. Large populations of immune individuals exist for a related flavivirus (tick-borne encephalitis virus [TBEV]), due to large-scale vaccination campaigns and endemic circulation throughout most of northern Europe and the southern Russian Federation. As a result, the question of whether anti-TBEV immunity can affect Zika virus pathogenesis is a pertinent one. For this study, we obtained 50 serum samples from individuals vaccinated with the TBEV vaccine FSME-IMMUN (Central European/Neudörfl strain) and evaluated their enhancement capacity in vitro using K562 human myeloid cells expressing CD32 and in vivo using a mouse model of ZIKV pathogenesis. Among the 50 TBEV vaccinee samples evaluated, 29 had detectable reactivity against ZIKV envelope (E) protein by enzyme-linked immunosorbent assay (ELISA), and 36 showed enhancement of ZIKV infection in vitro. A pool of the most highly reacting and enhanced samples resulted in no significant change in the morbidity/mortality of ZIKV disease in immunocompromised Stat2−/− mice. Our results suggest that humoral immunity against TBEV is unlikely to enhance Zika virus pathogenesis in humans. No clinical reports indicating that TBEV vaccinees experiencing enhanced ZIKV disease have been published so far, and though the epidemiological data are sparse, our findings suggest that there is little reason for concern. This study also displays a clear relationship between the phylogenetic distance between two flaviviruses and their capacity for pathogenic enhancement. IMPORTANCE The relationship between serial infections of two different serotypes of dengue virus and more severe disease courses is well-documented in the literature, driven by so-called antibody-dependent enhancement (ADE). Recently, studies have shown the possibility of ADE in cells exposed to anti-DENV human plasma and then infected with ZIKV and also in mouse models of ZIKV pathogenesis after passive transfer of anti-DENV human plasma. In this study, we evaluated the extent to which this phenomenon occurs using sera from individuals immunized against tick-borne encephalitis virus (TBEV). This is highly relevant, since large proportions of the European population are vaccinated against TBEV or otherwise seropositive.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 55-55
Author(s):  
Graham Packham ◽  
Serge Krysov ◽  
Christopher Ian Mockridge ◽  
Kathy N Potter ◽  
Freda K Stevenson

Abstract Abstract 55 Several lines of evidence support the idea that surface immunoglobulin M (sIgM) plays a key role in determining the clinical behavior of chronic lymphocytic leukemia (CLL). For example, the presence of somatic mutations in immunoglobulin variable region genes is a strong prognostic marker with unmutated CLL (U-CLL) associated with a poor outcome relative to mutated CLL (M-CLL). U-CLL also generally express higher levels of sIgM and retain the ability to signal via this receptor. In this study, we used surface biotinylation to analyse sIgM in CLL and discovered that it exists in two forms with differing mobility on SDS-PAGE. Treatment with glycosidases revealed that these forms were due to different N-glycosylation patterns in the μ constant region. One form is similar to that of normal B cells in bearing mature complex glycans common to most cell surface glycoproteins. The other is an immature mannosylated form more characteristic of endoplasmic reticulum (ER)-located μ chains. CLL cells expressed variable proportions of the immature mannosylated form and quantitative analysis demonstrated that, on average, the proportion of mannosylated sIgM was approximately 2-fold higher (p=0.006) in U-CLL compared to M-CLL. Although normal B cells isolated from blood expressed only the mature form of sIgM, in vitro treatment with anti-μ resulted in upregulation of the immature form, suggesting that glycan modification is a consequence of antigen exposure. Consistent with this, in vitro incubation of CLL cells was associated with increased expression of the mature form of sIgM. Phosphotyrosine analysis demonstrated that both forms of sIgM were able to signal following sIgM engagement in vitro. Taken together, these findings support the concept that CLL cells are continuously exposed to antigen in vivo. This process leads to a change in the N-glycosylation pattern of the re-expressed sIgM so that a mannosylated form predominates, especially in U-CLL. Strikingly, expression of mannosylated sIgM is also characteristic of follicular lymphoma, where it is constitutively displayed via N-glycosylation sites in the Ig variable region (Radcliffe et al. J Biol Chem. 2007; 282, 7405-15). Persistent mannosylation of sIgM appears to be a feature common to several B-cell malignancies, suggesting a role in pathogenesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3893-3893
Author(s):  
Daniel Mertens ◽  
Nupur Bhattacharya ◽  
Sarah Häbe ◽  
Hartmut Döhner ◽  
Stephan Stilgenbauer

Abstract Abstract 3893 Chronic lymphocytic leukemia (CLL) cells are highly dependent on microenvironmental input for their extended survival in vivo, but the underlying molecular mechanism is still unclear. Compared to non-malignant B-cells, CLL cells are more responsive to contact dependent complex stimuli like coculture on bone marrow derived stromal cell lines of both human (p<0.0001) and murine origin (p<0.01), but also to soluble factors (human conditioned medium p<0.0001, murine conditioned medium p<0.001, all student′s t-test). In order to understand the intrinsic difference of the anti-apoptotic phenotype of CLL cells, the signalling circuitry of the malignant cells was modelled. Compared to candidate ligands like SDF-1 (at concentrations between 10–1000ng/ml), BAFF (250–1000ng/ml), APRIL (250–1000ng/ml) and soluble anti-IgM (1–25μg/ml), the factors CD40L (10–2000ng/ml) and IL4 (0.1–10ng/ml) were the most efficient ligands in rescuing CLL cells from spontaneous death in vitro. The dose response of IL4 and CD40L displayed different saturation and cooperativity between CLL cells and non-malignant B-cells. Using IL4, saturation was reached both for CLL cells and B-cells at 0.2pM, but at 52% survival (+/− 8%) for CLL cells and 28% (+/−7%) for B-cells, and the estimated dissociation constant Kd was 0.01pM for both ligands. For CD40L, CLL cell survival reached saturation at 40nM, while no saturation was reached for B-cells. Intriguingly, B-cells showed cooperativity in their response to CD40L, with a cooperativity coefficient of 2.0 and a Kd of 70pM, while cooperativity for CD40L was lost in CLL cells (Kd of only 2.6pM). This pointed towards distinct differences in ligand-receptor interactions or in downstream signaling between CLL cells and non-malignant B-cells. However, high-throughput spatial analysis with a microscope-coupled cytometer did not show differences of receptor quantity or receptor distribution between malignant and non-malignant cells. In contrast, quantity and phosphorylation levels of downstream signalling nodes like STAT6 (measured by flow cytometry and validated by Western-blot) and the activity of NF-kB (p65 binding to DNA measured by oligonucleotide-coupled ELISA) were higher in CLL cells compared to B-cells from healthy donors. Therefore, the defect in IL4 and CD40L signalling that leads to an enhanced survival in CLL cells is likely caused by changes in the intracellular circuitry. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4677-4677
Author(s):  
Benedetta Apollonio ◽  
Tania Veliz Rodriguez ◽  
Cristina Scielzo ◽  
Maria Teresa Sabrina Bertilaccio ◽  
Lydia Scarfò ◽  
...  

Abstract B-Cell Receptor (BCR) triggering and responsiveness play a crucial role in the survival and expansion of Chronic Lymphocytic Leukemia (CLL) clones. In the recent past, several groups including ours have investigated the activation status of the signaling pathways originating from the leukemic BCR. Specifically we found that around 50% of CLL patients display a biochemical signature characterized by constitutive phosphorylation of ERK1/2 (pERK(+)) and constitutive nuclear translocation of NF-ATc1. These cases are unable to respond in vitro to BcR stimulation and are resistant to spontaneous apoptosis, thus resembling B lymphocytes previously anergized in vivo. Similar biochemical and functional features have been recently demonstrated in B leukemic cells persisting in the blood in patients treated with the BTK inhibitor, Ibrutinib, thereby making anergy an attractive target on the way to obtain eradication of the disease. CLL-associated B cell anergy can be specifically targeted by using different MAPK-inhibitors that have been shown to induce apoptosis selectively in the group of pERK(+) CLL. These data suggested that MAPK signalling can be efficiently inhibited in CLL for therapeutic purpose and that the phosphorylation status of ERK1/2 may represent a reliable biomarker to predict and monitor treatment response. However, even if the tested compounds were shown to be extremely efficient in inhibiting ERK1/2 phosphorylation in vitro, a lack of clinical activity was reported for many of them when tested in patients, mostly with solid tumors. In the present work, we used Trametinib, a specific MEK1/2 inhibitor, recently approved as a single-agent for the treatment of V600E mutated metastatic melanoma, and we investigated, at preclinical level, its activity in both primary CLL samples and a xenograft leukemic mouse model. Trametinib treatment completely inhibited constitutive ERK1/2 phosphorylation in 10 pERK1/2(+) samples at 3uM after 30 minutes treatment. Additionally, in 23 patients Trametinib treatment for 48 hours reduced cell viability in the cells from all 12 pERK1/2(+) patients (28,2% ± 3,5 mean survival) tested as compared to those from the pERK(-) group (11 cases, 58,1% ± 3,8 mean survival, p< 0,0001). To strengthen our in vitro data, we evaluated the effect of Trametinib administration in the xenograft Rag2-/-gc-/- mouse model subcutaneously transplanted with the CLL cell line MEC1, characterized by specific features of anergy. Mice were subcutaneously injected with 10x106 cells and then challenged with Trametinib (oral gavage with 1mg/kg or with vehicle alone) starting from day 21 after tumour injection for 14 days. The effect of the inhibitor was monitored by tumour volume growth. Trametinb administration delayed tumour growth (p<0.05 starting at days 27) and inhibited leukemic cell dissemination in the peripheral blood, peritoneal cavity and bone marrow. In summary, our data further support the idea that blocking anergic pathways may be highly effective not only in vitro but also in vivo with potential clinical implications at least in the subset of patients whose cells are characterized by anergic features, including those with persistent lymphocytosis when treated with Ibrutinib. The preclinical efficacy shown by Trametinib, a drug already approved for clinical use, warrants the implementation of controlled studies in CLL patients. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 4 (24) ◽  
pp. 6106-6116
Author(s):  
Viktoria Kohlhas ◽  
Michael Hallek ◽  
Phuong-Hien Nguyen

Abstract The treatment of chronic lymphocytic leukemia (CLL) has been improved dramatically by inhibitors targeting B-cell receptor (BCR)–associated kinases. The tyrosine kinase Lyn is a key modulator of BCR signaling and shows increased expression and activity in CLL. To evaluate the functional relevance of Lyn for CLL, we generated a conditional knockin mouse model harboring a gain-of-function mutation of the Lyn gene (LynY508F), which was specifically expressed in the B-cell lineage (Lynup-B). Kinase activity profiling revealed an enhanced responsiveness to BCR stimulation in Lynup-B B cells. When crossing Lynup-B mice with Eµ-TCL1 mice (TCL1tg/wt), a transgenic mouse model for CLL, the resulting TCL1tg/wt Lynup-B mice showed no significant change of hepatomegaly, splenomegaly, bone marrow infiltration, or overall survival when compared with TCL1tg/wt mice. Our data also suggested that TCL1 expression has partially masked the effect of the Lynup-B mutation, because the BCR response was only slightly increased in TCL1tg/wt Lynup-B compared with TCL1tg/wt. In contrast, TCL1tg/wt Lynup-B were protected at various degrees against spontaneous apoptosis in vitro and upon treatment with kinase inhibitors targeting the BCR. Collectively, and consistent with our previous data in a Lyn-deficient CLL model, these data lend further suggest that an increased activation of Lyn kinase in B cells does not appear to be a major driver of leukemia progression and the level of increased BCR responsiveness induced by Lynup-B is insufficient to induce clear changes to CLL pathogenesis in vivo.


2021 ◽  
Vol 5 (16) ◽  
pp. 3134-3146
Author(s):  
Burcu Aslan ◽  
Gorkem Kismali ◽  
Lisa S. Chen ◽  
LaKesla R. Iles ◽  
Mikhila Mahendra ◽  
...  

Abstract Although ibrutinib improves the overall survival of patients with chronic lymphocytic leukemia (CLL), some patients still develop resistance, most commonly through point mutations affecting cysteine residue 481 (C481) in Bruton’s tyrosine kinase (BTKC481S and BTKC481R). To enhance our understanding of the biological impact of these mutations, we established cell lines that overexpress wild-type or mutant BTK in in vitro and in vivo models that mimic ibrutinib-sensitive and -resistant CLL. MEC-1 cell lines stably overexpressing wild-type or mutant BTK were generated. All cell lines coexpressed GFP, were CD19+ and CD23+, and overexpressed BTK. Overexpression of wild-type or mutant BTK resulted in increased signaling, as evidenced by the induction of p-BTK, p-PLCγ2, and p-extracellular signal–related kinase (ERK) levels, the latter further augmented upon IgM stimulation. In all cell lines, cell cycle profiles and levels of BTK expression were similar, but the RNA sequencing and reverse-phase protein array results revealed that the molecular transcript and protein profiles were distinct. To mimic aggressive CLL, we created xenograft mouse models by transplanting the generated cell lines into Rag2−/−γc−/− mice. Spleens, livers, bone marrow, and peripheral blood were collected. All mice developed CLL-like disease with systemic involvement (engraftment efficiency, 100%). We observed splenomegaly, accumulation of leukemic cells in the spleen and liver, and macroscopically evident necrosis. CD19+ cells accumulated in the spleen, bone marrow, and peripheral blood. The overall survival duration was slightly lower in mice expressing mutant BTK. Our cell lines and murine models mimicking ibrutinib-resistant CLL will serve as powerful tools to test reversible BTK inhibitors and novel, non–BTK-targeted therapeutics.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jasmina Bier ◽  
Sebastian M. Steiger ◽  
Holger M. Reichardt ◽  
Fred Lühder

Induction of T cell apoptosis constitutes a major mechanism by which therapeutically administered glucocorticoids (GCs) suppress inflammation and associated clinical symptoms, for instance in multiple sclerosis (MS) patients suffering from an acute relapse. The sensitivity of T cells to GC action depends on their maturation and activation status, but the precise effect of antigen-priming in a pathological setting has not been explored. Here we used transgenic and congenic mouse models to compare GC-induced apoptosis between naïve and antigen-specific effector T cells from mice immunized with a myelin peptide. Antigen-primed effector T cells were protected from the pro-apoptotic activity of the synthetic GC dexamethasone in a dose-dependent manner, which resulted in their accumulation relative to naïve T cells in vitro and in vivo. Notably, the differential sensitivity of T cells to GC-induced apoptosis correlated with their expression level of the anti-apoptotic proteins Bcl-2 and Bcl-XL and a loss of the mitochondrial membrane potential. Moreover, accumulation of antigen-primed effector T cells following GC treatment in vitro resulted in an aggravated disease course in an adoptive transfer mouse model of MS in vivo, highlighting the clinical relevance of the observed phenomenon. Collectively, our data indicate that antigen-priming influences the T cells’ sensitivity to therapeutically applied GCs in the context of inflammatory diseases.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2149-2149
Author(s):  
Qi Cai ◽  
Robin Jeannet ◽  
Hongjun Liu ◽  
ya-Huei Kuo

Abstract Approximately 12% of human acute myeloid leukemia (AMLs) harbor a recurrent chromosomal rearrangement inv(16)(p13q22). Inv(16) creates a fusion gene Cbfb-MYH11, encoding the fusion protein CBFß-SMMHC. Expressing CBFß-SMMHC in hematopoietic cells using a constitutive knock-in mouse model (Cbfb+/Cbfb-MYH11) or a conditional knock-in mouse model (Cbfb56M/+/Mx1-Cre; 129SvEv strain) causes defects in lymphoid and myeloid differentiation, and predisposes mice to AML. Previous studies with the constitutive knock-in mouse model showed impaired primitive erythropoiesis, however, Cbfb-MYH11 knocked-in cells were able to contribute to erythropoiesis in chimeric mice. To further delineate the effect of CBFß-SMMHC in adult erythropoiesis in the conditional knock-in mouse, we backcrossed Cbfb56M/+/Mx1-Cre into C57BL/6 and a Rosa26mT/mG Cre reporter strain. Induced expression of CBFß-SMMHC in adult mice leads to cell number dependent development of AML, consistent with previous studies in 129SvEv strain. Analysis of pre-leukemic bone marrow 2 weeks after induction revealed a 5.7-fold expansion of immunophenotypic pre-megakaryocyte/erythrocyte (Pre-Meg/E; Lin-cKit+Sca1-CD16-/loCD150+CD105-), and a 4.7 fold decrease of the erythroid progenitor (EP; Lin-cKit+Sca1-CD16-/loCD105hi) subset compared to similarly treated control mice. Both methylcellulose-based erythroid colony forming assay and in vitro erythroid differentiation culture showed that pre-leukemic Pre-Meg/Es expressing CBFß-SMMHC had an impaired differentiation potential for erythroid lineage. Using the Rosa26mT/mG Cre reporter allele, we tracked the proportions of CBFß-SMMHC- expressing cells (GFP+) in the Pre-Meg/E and EP subsets. We observed that the contribution of GFP+ cells sharply decreased in EPs but not in Pre-Meg/Es from primary pre-leukemic mice. Similar results were seen in transplant recipients engrafted with sorted GFP+ pre-leukemic Lin-cKit+Sca1+ cells. These results further confirmed that CBFß-SMMHC impairs cell-autonomous erythroid differentiation in vivo. Consistent with the impaired differentiation of Pre-Meg/Es, we observed altered expression pattern of erythroid regulatory genes, including Fog1, Gata2, and Gfi1b. The pre-leukemic Pre-Meg/Es exhibited increased colony forming and replating capacity in vitro and enhanced proliferation and survival in vivo. To determine whether these phenotypic Pre-Meg/E cells could be the cellular origin for leukemic transformation, we expressed a known cooperative onco-protein Mpl by retroviral transduction followed by transplantation. The majority of mice (83%) receiving 100,000 Pre-Meg/E cells developed leukemia with a medium onset of 92 days, suggesting that Pre-Meg/Es indeed are capable of leukemia initiation. In conclusion, the expression of CBFß-SMMHC impairs adult erythropoiesis at the transition of Pre-Meg/E to EPs, causing an expansion of Pre-Meg/E cells. These pre-leukemic Pre-Meg/Es could be the target cell of additional mutations contributing to leukemia transformation. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document