scholarly journals KDM6 Demethylases Integrate DNA Repair Gene Regulation: Loss of KDM6A Sensitizes AML to PARP Inhibition and Potentiates with BCL2 Blockade

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 25-25
Author(s):  
Liberalis Debraj Boila ◽  
Liqing Jin ◽  
Alex Murison ◽  
Subham K. Bandyopadhyay ◽  
Subhadeep Ghosh ◽  
...  

Abstract Acute myeloid leukemia (AML) is a heterogeneous, aggressive hematological malignancy with dismal prognosis where limited targeted therapies are currently available. Poly-(ADP-ribose)-polymerase (PARP) inhibition has emerged as an important therapeutic arsenal to target homologous recombination-deficient tumors. However, molecular understanding of PARP blockade in the context of epigenetic derangements and transcriptional plasticity in human elderly AML pathogenesis remains unexplored. KDM6 proteins are H3K27 demethylases that critically regulate chromatin architecture in multi-cellularity and tumorigenesis (Tran, Mol Cell Biol 2020). KDM6A escapes X-chr inactivation, and Utx-/- female mice spontaneously develop aging associated myeloid leukemia (Gozdecka, Nat Genet 2018; Sera, Blood 2021). In addition, KDM6A loss of function mutation is implicated in AML relapse (Stief, Leukemia 2020). In contrast, KDM6B primarily exerts an oncogenic function in heme-malignancies. Together, KDM6A and KDM6B play cell type-specific function in leukemia, and KDM6 proteins and associated signaling emerge as important focal point for developing molecular targeted therapy. We identify that KDM6 demethylase activity critically regulates DNA damage repair (DDR) gene expression program in AML. Transcriptome analysis indicated a significant downregulation of expression of DDR genesets in both KDM6A deficient human AML and Utx -/- pre-leukemic cells. Lentiviral shRNA screening performed in response to low-dose γ-irradiation in AML stem cells, revealed a radioprotective function of KDM6A. Expression of KDM6s is regulated by genotoxic stress in a time-dependent manner, and deficiency of JmjC catalytic function impaired DDR transcriptional activation and compromised repair potential. Mechanistically, quantitative ChIP experiments also revealed co-operation between KDM6A and SWI/SNF facilitating dynamic chromatin remodeling at TSS/promoter to induce DDR gene expression. To interrogate changes in chromatin accessibility we performed ATAC-seq analysis in KDM6 deficient AML. Motif enrichment highlighted that while KDM6A depletion led to reduced chromatin access to 140 transcription factors (TFs), only 56 TF binding sites showed increased accessibility. Overall, changes in chromatin accessibility, associated with a reduced binding of DDR regulatory TFs in KDM6 deficient AML, account for a compromised DDR function. In agreement with these findings an array of KDM6 deficient AML cells were more sensitive to PARP inhibition, and pre-clinical mice models xenotransplanted with KDM6A loss of function AML line showed an increased susceptibility to PARP blockade in vivo. FLT3-ITD positive AML with a lower KDM6A expression was more sensitive to olaparib. In addition, olaparib administration significantly reduced bone marrow engraftment of patient-derived xenografts of KDM6A-mutant primary AML. Interestingly, KDM6A expression is upregulated in venetoclax-resistant monocytic-AML compared to venet-sensitive primitive-AML. Using venet responsive isogenic lines we demonstrated that attenuation of KDM6 function increased mitochondrial activity, intracellular ROS levels, de-repressed BCL2 expression, and sensitized AML cells to venetoclax. Additionally, KDM6 loss resulted in transcriptional repression of BCL2A1, commonly associated with venet resistance (Zhang, Nat Cancer 2020). Corroborating these results, dual targeting of PARP with BCL2 was superior to PARP or BCL2 inhibitor monotherapy in inducing primary AML apoptosis, and KDM6A loss further enhanced this synergism. In sum, our study illustrates a molecular mechanistic rationale in support for a novel combination targeted therapy for AML, and posit KDM6A as a molecular determinant for therapeutic efficacy. Intriguingly, KDM6A functions as a gatekeeper of BCL2 and BCL2A1 expression. Similar to TET2 although bi-allelic Utx loss causes evolution to myeloid neoplasms, minimal KDM6 activity is important for survival of human AML cells. KDM6s have been implicated in solid tumors, and both PARP and BCL2 inhibitors are being tested in cancer patients, underscoring a wider scope of application. To conclude, KDM6A unfolds to be a central regulator for susceptibility of AML to both PARP and BCL2 inhibition, expanding the possibility to characterize effective combination targeted therapy for AML in clinical settings. Disclosures Minden: Astellas: Consultancy. Dick: Celgene, Trillium Therapeutics: Membership on an entity's Board of Directors or advisory committees, Research Funding.

Blood ◽  
1991 ◽  
Vol 77 (11) ◽  
pp. 2404-2412 ◽  
Author(s):  
DC Roy ◽  
JD Griffin ◽  
M Belvin ◽  
WA Blattler ◽  
JM Lambert ◽  
...  

Abstract The use of immunotoxins (IT) to selectively destroy acute myeloid leukemia (AML) cells in vivo or in vitro is complicated by both the antigenic similarity of AML cells to normal progenitor cells and the difficulty of producing a sufficiently toxic conjugate. The monoclonal antibody (MoAb) anti-MY9 is potentially ideal for selective recognition of AML cells because it reacts with an antigen (CD33) found on clonogenic AML cells from greater than 80% of cases and does not react with normal pluripotent stem cells. In this study, we describe an immunotoxin that is selectively active against CD33+ AML cells: Anti- MY9-blocked-Ricin (Anti-MY9-bR), comprised of anti-MY9 conjugated to a modified whole ricin that has its nonspecific binding eliminated by chemical blockage of the galactose binding domains of the B-chain. A limiting dilution assay was used to measure elimination of HL-60 leukemic cells from a 20-fold excess of normal bone marrow cells. Depletion of CD33+ HL-60 cells was found to be dependent on the concentration of Anti-MY9-bR and on the duration of incubation with IT at 37 degrees C. More than 4 logs of these leukemic cells were specifically depleted following short exposure to high concentrations (10(-8) mol/L) of Anti-MY9-bR. Incubation with much lower concentrations of Anti-MY9-bR (10(-10) mol/L), as compatible with in vivo administration, resulted in 2 logs of depletion of HL-60 cells, but 48 to 72 hours of continuous exposure were required. Anti-MY9-bR was also shown to be toxic to primary AML cells, with depletion of greater than 2 logs of clonogenic cells following incubation with Anti- MY9-bR 10(-8) mol/L at 37 degrees C for 5 hours. Activity of Anti-MY9- bR could be blocked by unconjugated Anti-MY9 but not by galactose. As expected, Anti-MY9-bR was toxic to normal colony-forming unit granulocyte-monocyte (CFU-GM), which expresses CD33, in a concentration- and time-dependent manner, and also to burst-forming unit-erythroid and CFU-granulocyte, erythroid, monocyte, megakaryocyte, although to a lesser extent. When compared with anti-MY9 and complement (C′), Anti- MY9-bR could be used in conditions that provided more effective depletion of AML cells with substantially less depletion of normal CFU- GM. Therefore, Anti-MY9-bR may have clinical utility for in vitro purging of AML cells from autologous marrow when used at high IT concentrations for short incubation periods. Much lower concentrations of Anti-MY9-bR that can be maintained for longer periods may be useful for elimination of AML cells in vivo.


2019 ◽  
Vol 10 (12) ◽  
Author(s):  
Chi Huu Nguyen ◽  
Katharina Bauer ◽  
Hubert Hackl ◽  
Angela Schlerka ◽  
Elisabeth Koller ◽  
...  

AbstractEcotropic virus integration site 1 (EVI1), whose overexpression characterizes a particularly aggressive subtype of acute myeloid leukemia (AML), enhanced anti-leukemic activities of all-trans retinoic acid (atRA) in cell lines and patient samples. However, the drivers of leukemia formation, therapy resistance, and relapse are leukemic stem cells (LSCs), whose properties were hardly reflected in these experimental setups. The present study was designed to address the effects of, and interactions between, EVI1 and retinoids in AML LSCs. We report that Evi1 reduced the maturation of leukemic cells and promoted the abundance, quiescence, and activity of LSCs in an MLL-AF9-driven mouse model of AML. atRA further augmented these effects in an Evi1 dependent manner. EVI1 also strongly enhanced atRA regulated gene transcription in LSC enriched cells. One of their jointly regulated targets, Notch4, was an important mediator of their effects on leukemic stemness. In vitro exposure of leukemic cells to a pan-RAR antagonist caused effects opposite to those of atRA. In vivo antagonist treatment delayed leukemogenesis and reduced LSC abundance, quiescence, and activity in Evi1high AML. Key results were confirmed in human myeloid cell lines retaining some stem cell characteristics as well as in primary human AML samples. In summary, our study is the first to report the importance of EVI1 for key properties of AML LSCs. Furthermore, it shows that atRA enhances, and a pan-RAR antagonist counteracts, the effects of EVI1 on AML stemness, thus raising the possibility of using RAR antagonists in the therapy of EVI1high AML.


2020 ◽  
Vol 38 (6) ◽  
pp. 1664-1676
Author(s):  
Małgorzata Opydo-Chanek ◽  
Iwona Cichoń ◽  
Agnieszka Rak ◽  
Elżbieta Kołaczkowska ◽  
Lidia Mazur

Summary One of the key features of acute myeloid leukemia (AML) is the arrest of differentiation at the early progenitor stage of myelopoiesis. Therefore, the identification of new agents that could overcome this differentiation block and force leukemic cells to enter the apoptotic pathway is essential for the development of new treatment strategies in AML. Regarding this, herein we report the pro-differentiation activity of the pan-Bcl-2 inhibitor, obatoclax. Obatoclax promoted differentiation of human AML HL-60 cells and triggered their apoptosis in a dose- and time-dependent manner. Importantly, obatoclax-induced apoptosis was associated with leukemic cell differentiation. Moreover, decreased expression of Bcl-2 protein was observed in obatoclax-treated HL-60 cells. Furthermore, differentiation of these cells was accompanied by the loss of their proliferative capacity, as shown by G0/G1 cell cycle arrest. Taken together, these findings indicate that the anti-AML effects of obatoclax involve not only the induction of apoptosis but also differentiation of leukemic cells. Therefore, obatoclax represents a promising treatment for AML that warrants further exploration.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2942-2942
Author(s):  
Aditya Chaubey ◽  
Shane Hormon ◽  
Chinavenmeni S. Velu ◽  
Tristan Bourdeau ◽  
Jinfang Zhu ◽  
...  

Abstract In severe congenital neutropenia (SCN) patients and mice with Growth factor independent-1 (Gfi1) loss of function, arrested progenitors are suspended in a hyperproliferative state while terminal granulpoiesis is blocked. SCN patients are at increased risk for the development of acute myeloid leukemia. We demonstrate that Gfi1 directly targets HoxA9, Pbx1 and Meis1 during normal myelopoiesis. Gfi1−/− progenitors exhibit elevated levels of HoxA9, Pbx1 and Meis1, exaggerated HoxA9-Pbx1-Meis1 activity, and increased persistence in vivo and in vitro. Limiting HoxA9 alleles corrects, in a dose dependent manner, in vivo and in vitro phenotypes observed with loss of Gfi1. Moreover, in a manner conserved in Drosophila anterior/posterior patterning, we demonstrate that these factors can compete for occupancy of DNA sequences encoding composite Gfi1-HoxA9-Pbx1-Meis1 binding sites. Finally, the expression of Gfi1 and HoxA9 are inverse and stratify human myeloid leukemias, suggesting a role for HoxA9- Gfi1 antagonism in human AML. In agreement with this, a myeloproliferative disorder progresses into a rapid, lethal and transplantable myeloid leukemia in a Gfi1−/− setting. We conclude that the lifespan and oncogenic transformation of hematopoietic progenitor cells is regulated through a conserved competition between Gfi1 and HoxA9-Pbx1-Meis1.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3786-3786
Author(s):  
Ting Liu ◽  
Dragana Jankovic ◽  
Laurent Brault ◽  
Sabine Ehret ◽  
Vincenzo Rossi ◽  
...  

Abstract Expression of meningioma 1 (MN1) has been proposed to be a negative prognostic marker in adult acute myeloid leukemia (AML). In pediatric leukemia, we found overexpression of MN1 in 53 of 88 cases: whereas no MN1 expression was detected in T-cell acute lymphoblastic leukemia (T-ALL), significant amounts of MN1 were found in immature B-cell ALL and most cases of infant leukemia. Interestingly, 17 of 19 cases harboring fusion genes involving the mixed-lineage leukemia (MLL-X) gene showed elevated MN1 expression. Lentiviral siRNA mediated MN1 knock-down resulted in cell cycle arrest and impaired clonogenic growth of 3 MLL-X-positive human leukemia cell lines overexpressing MN1 (THP-1, RS4;11, MOLM-13). In a mouse model of MLL-ENL-induced leukemia we found MN1 to be overexpressed as a consequence of provirus integration. Strikingly co-expression of MN1 with MLL-ENL resulted in significantly reduced latency for induction of an AML phenotype in mice suggesting functional cooperation. Immunophenotyping and secondary transplant experiments suggested that MN1 overexpression seems to expand the L-GMP cell population targeted by the MLL-ENL fusion. Gene expression profiling allowed defining a number of potential MN1 hematopoietic targets. Upregulation of CD34, FLT3, HLF, or DLK1 was validated in bone marrow transiently overexpressing MN1, in MN1-induced mouse acute myeloid leukemia, as well as in pediatric leukemias with elevated MN1 levels. Our work shows that MN1 is overexpressed in a significant fraction of pediatric acute leukemia, is essential for growth of leukemic cells, and that MN1 can act as a cooperating oncogene with MLL-ENL most probably through modification of a distinct gene expression program that leads to expansion of a leukemic progenitor population targeted by MLL-fusion genes.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 908-908
Author(s):  
Djamel Aggoune ◽  
Nathalie Sorel ◽  
Sanaa El Marsafy ◽  
Marie Laure Bonnet ◽  
Denis Clay ◽  
...  

Abstract Abstract 908 There is growing evidence that the bone marrow microenvironment could participate to the progression of chronic myeloid leukemia (CML). Recent data show indeed that placental growth factor (PGF) expression is highly induced in stromal cells from CML patients although they are not part of the leukemic clone as they are Ph1-negative (Schmidt et al, Cancer Cell 2011). It is possible that leukemic cells instruct the niche components via extracellular or contact signals, transforming progressively the “normal niche” into a functionally “abnormal niche” by inducing aberrant gene expression in these cells, similar to the pattern that has been identified in cancer-associated fibroblasts (CAF). In an effort to identify the differential gene expression pattern in the CML niche, we have undertaken two strategies of gene expression profiling using a Taqman Low Density Arrays (TLDA) protocol designed for 93 genes involved in antioxidant pathways (GPX, PRDX, SOD families), stromal cell biology (Collagen, clusterin, FGF, DHH), stem cell self-renewal (Bmi1, MITF, Sox2) and hematopoietic malignancies (c-Kit, hTERT, Dicer, beta-catenin, FOXO3). The first strategy consisted in the analysis of mesenchymal stem cells (MSCs) isolated from the bone marrow of newly diagnosed CP-CML patients (n=11). As a control, we have used MSCs isolated from the bone marrow of age-matched donors (n=3). MSCs were isolated by culturing 6–8.106 bone marrow mononuclear cells in the presence of b-FGF (1 ng/ml). At 2–3 weeks, cells were characterized by the expression of cell surface markers (CD105+, CD90+) and by their potential of differentiation towards osteoblastic, chondrocytic and adipocytic lineages. The second strategy aimed to study the potential instructive influence of leukemic cells in the gene expression program of normal MSC after co-culture with either the UT7 cell line expressing BCR-ABL (3 days) or with CD34+ cells isolated from CP-CML at diagnosis (5 days) as compared to co-culture with cord blood CD34+ cells. After culture, CD45-negative MSC were cell-sorted and analyzed by TLDA. All results were analyzed using the StatMiner software. Results: TLDA analysis of gene expression pattern of MSC from CML patients (n=11) as compared to normal MSCs (n=3) identified 6 genes significantly over-expressed in CML-MSC: PDPN (10-Fold Increase), V-CAM and MITF (∼8 Fold increase), MET, FOXO3 and BMP-1 (∼ 5 Fold increase). To confirm these results we have performed Q-RT-PCR in a cohort of CML-MSC (n= 14, including the 11 patients as analyzed in TLDA) as compared to normal MSC. High levels of PDPN (Podoplanin, ∼8 fold increase), MITF (Microphtalmia Associated Transcription factor, 4-Fold) and VCAM (Vascular Cell Adhesion Protein, 2 fold increase) mRNA were again observed on CML MSCs. Our second strategy (co-culture of normal MSC with BCR-ABL-expressing UT7) revealed an increase of IL-8 and TNFR mRNA expression in co-cultured MSCs (∼5-fold ) whereas there was a major decrease in the expression of DHH (∼ 25-fold) upon contact with BCR-ABL-expressing cells. No modification of the expression of PDPN, MITF or VCAM was noted in normal MSC after this 3-day co-culture strategy using UT7-BCR-ABL cells. Current experiments are underway to determine if primary CD34+ cells from CML patients at diagnosis could induce a specific gene expression pattern in normal MSC after 5 days of co-culture. PDPN is a glycoprotein involved in cell migration and adhesion, acting downstream of SRC. It has been shown to promote tumor formation and progression in solid tumor models and is highly expressed in CAFs. MITF is a bHLH transcription factor involved in the survival of melanocyte stem cells and metastatic melanoma. Finally, high VCAM1 mRNA expression by MSCs from CML patients could be involved in increased angiogenesis known to be present on CML microenvironment. In conclusion, our results demonstrate an abnormal expression pattern of 3 important genes (PDPN, MITF and VCAM1) in MSC isolated in CP-CML patients at diagnosis. The mechanisms leading to an increased mRNA expression (instructive or not instructive by leukemic cells) and their relevance to CML biology are under evaluation. Our results, confirming previous data, suggest strongly the existence of a molecular cross-talk between leukemic cells and the leukemic niche. The elucidation of such aberrant pathways in the microenvironment could lead to the development of “niche-targeted” therapies in CML. Disclosures: Turhan: Novartis, Bristol Myers Squibb: Honoraria, Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2717-2717 ◽  
Author(s):  
Aniththa Thivakaran ◽  
Lacramioara Botezatu ◽  
Judith Maria Hoenes ◽  
Yahya Saleh Al-Matary ◽  
Nadine Olberding ◽  
...  

Abstract The proper differentiation of hematopoietic stem cells (HSCs) is regulated by a concert of different so called transcription factors (TFs). A disturbed function of these TFs can be the basis of malignant diseases such as acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Growth Factor Independence 1b (Gfi1b) is a repressing transcription factor, with a key role in maintaining the quiescence of HSCs and the proper emergence and maturation of erythrocytes and platelets. Here we show that low expression of GFI1B in blast cells is associated with an inferior prognosis of AML and MDS patients. Using three different mice models of human AML (Nup98-HoxD13, MLL-AF9 and expression of a mutated K-Ras), we could show that reduced expression of Gfi1b accelerates AML development in mice and the latency is even more shortened when Gfi1b is conditionally deleted. Using a limiting dilution assay of transplantation of different number of Gfi1b-wildtype and Gfi1b-deficient cells, we could show that loss of Gfi1b significantly enhanced stemness of leukemic cells. Since Gfii1b is involved in epigenetic regulation of gene expression, we analyzed effect of loss of Gfi1b on an epigenetic level by analyzing the whole genome using Chip-Seq. We found that loss of Gfi1b leads to genome wide increased level of H3K9 acetylation of genes and hence expression of these genes involved in leukemia development. On a molecular level, we found that loss of Gfi1b not only increases the levels of reactive oxygen species (ROS), but also induces gene expression changes of key AML-pathways such as the p38/ AKT pathways. These results demonstrate that Gfi1b functions as an oncosuppressor in MDS/AML development. Disclosures Dührsen: Roche: Honoraria, Research Funding; Amgen: Honoraria, Research Funding; Alexion Pharmaceuticals: Honoraria, Research Funding. Khandanpour:Max-Eder: Research Funding; Hospital of Essen university: Research Funding.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4771-4771
Author(s):  
Guangbiao Zhou ◽  
Zheng Hu ◽  
Dapeng Liu ◽  
Fuqun Wu ◽  
Jiang Zhu ◽  
...  

Abstract STI571/Gleevec/imatinib, a rationally-designed agent that occupies the ATP-binding site of BCR-ABL and stabilizes the protein in its closed, inactive conformation, has been a remarkable success for the treatment of chronic myeloid leukemia (CML). However, a significant proportion of patients chronically treated with STI571 develop resistance because of the acquisition of mutations in the kinase domain of BCR-ABL. Furthermore, the effects of STI571 on CML patients in accelerated phase or blastic crisis are unsatisfactory since many patients relapse after transient remission. Hence, additional drugs or STI571-based combination regimens are desired to circumvent resistance and to improve response rates. Here we reported that PS-341, a proteasome inhibitor which offers great promise to patients with multiple myeloma (MM), significantly enhanced the antileukemia activity of STI571 in vitro and in vivo. We found a synergy exists between low concentrations of PS-341 (5–10 nM) and STI571 (0.1–0.2 μM) in inhibition of cell growth and induction of apoptosis in K562 cell line and CD34+ leukemic cells isolated from CML patients. In K562 cells, combined use of PS-341 and STI571 accelerated activation of caspase-3, 9, and facilitated cleavage of poly-(ADP-ribose) polymerase (PARP) as compared to those in cells treated with PS-341 or STI571 alone. Moreover, PS-341/STI571 combination resulted in potentiated degradation of BCR-ABL and downregulation of phosphorylated BCR-ABL as compared to those in mono treatment. In nude mice inoculated subcutaneously with K562 cells, treatment with PS-341 (injected intraperitoneally, ip) alone (at doses of 0.05, 0.5, 1 mg/kg/d, twice a week for 4 weeks, respectively) decreased tumor growth in a dose-dependent manner. STI571 (ip) at 10 mg/kg/d also inhibited tumor growth. Intriguingly, combinatory administration of low dose PS-341 (0.05 mg/kg/d, twice a week for 4 weeks) and STI571 (10 mg/kg/d) yielded a much more profound inhibition of tumor growth and even clearance of leukemic cells in mice compared to either monotherapy. Taken together, these results demonstrate synergic effects of PS-341 and STI571, and provide the rationale to evaluate PS-341/STI571 combination in treating CML aiming to further improve clinical outcome of patients.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 523-523
Author(s):  
Leandro Cerchietti ◽  
Maria E. Figueroa ◽  
David Meyers ◽  
Philip A. Cole ◽  
Kapil Bhalla ◽  
...  

Abstract DLBCL is the most common form of non-Hodgkin’s lymphoma. Combinations of untargeted chemotherapeutic agents cure between 40–60% of DLBCL patients. We are interested in the rational design of targeted combinatorial therapy for DLBCL using non-chemotherapy agents. Towards this goal we developed an inhibitor of the BCL6 transcriptional repressor, the most commonly involved oncogene in DLBCL. This BCL6 peptide inhibitor (BPI) causes de-repression of BCL6 target genes and kills DLBCL cells. Since single agent targeted therapy is unlikely to cure tumors, we hypothesized that identification of survival pathways triggered by BPI would facilitate rational design of combinatorial biological therapy for DLBCL. In order to identify such pathways we performed gene expression (GE) microarray studies in ten DLCBL cell lines treated with BPI vs. control. Six cell lines were BCL6 positive and four were BCL6 negative. Only the BCL6 positive cells yielded differences in gene expression. Among BPI induced genes was the p300 histone acetyl-transferase. The overlapping genes among the six cell lines were used to generate a BPI response signature. We used this signature to query the Broad Institute Connectivity Map, which contains the GE signature of 164 distinct small-molecule perturbagens. The top scoring classes of drugs were the histone deacetylase inhibitors (HDIs) and HSP90 inhibitors. Considering that BPI is chemically un-related to HDIs or HSP90 inhibitors and that BPI induces p300, we hypothesized that a major biological effect of BPI is to cause the acetylation of HSP90 (which inhibits Hsp90 pro-survival activity) and p53, (which enhances its pro-apoptotic activity). We verified that p300 is a direct BCL6 target gene by ChIP assays, that BPI induces p300 mRNA and protein by QPCR and western blot, and that p300 is silenced in most primary DLBCLs at both the mRNA and protein levels. Accordingly, BPI induced acetylation of Hsp90 and inhibited its function, as demonstrated by the decrease in the abundance of Hsp90 client proteins (AKT/PKB and c-raf). BPI also induced acetylation and functional activity of p53 in a p300-dependent manner (and also induces p53 expression). The importance of p300 was confirmed since a p300-dominant negative construct and the specific p300(HAT) inhibitor Lys-CoA-TAT could block BPI antilymphoma activity. Remarkably, we observed a dose-sequence dependent synergistic effect of BPI followed by Hsp90 inhibitors in killing DLBCL cells. Hsp90 is a relevant target in DLBCL since HSP90?/? protein was expressed in ∼90% of DLBCL patients (n=70). HDIs also increase acetylation of Hsp90 and p53. The HDI drugs SAHA, valproic acid and TSA all profoundly synergized with BPI to specifically eradicate BCL6 positive DLBCL cell lines. In conclusion, we discovered an unexpected mechanistic link between BCL6 and suppression of protein acetylation in lymphomagenesis. This information was harnessed for the rational design of synergistic targeted therapy with BCL6 inhibitors followed by Hsp90 or HDAC inhibitors to target cellular pathways induced by BPI. We anticipate that these drug combinations will result in more potent and less toxic therapeutic treatment of DLBCL, possibly with less or no added chemotherapy.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4242-4242
Author(s):  
Jishi Wang

Abstract Objective : HO-1 is a microsomal enzyme catalyzing the first, rate-limiting step in degradation of heme, HO-1 is a inducible isoform of HO, it can be strongly induced in response to cellular stress and diverse oxidative stimuli, including its substrate heme, Many studies have convincingly shown that HO-1 is a cytoprotective and antiapoptotic enzyme. the objective of this study was to investigate the influence on the K562 cell growth and apoptosis after hemin-induced HO-1 expression, and to investigate the influence on K562 cells and imatinib-resistant CML cells after ZnPPIX-induced HO-1 inhibition. Methods: different concentrations hemin (0umol/l A20umol/l 30umol/l)was used respectively to induce HO-1 expression of cultured chronic myeloid leukemia cell line K562, then detected HO-1 mRNA expression under different time by RT-PCR, and MTT was used to detected the viability of K562 cells. In addition, we used STI571(2 μmol/L) deal with the hemin-induced cells, then confirm HO-1 protective effect against STI571 use MTT. Then ZnPPIX was used to inhibition HO-1 expression of K562 and imatinib-resistant cells, similarly, RT-PCR and MTT was used for analyzed. Results: The HO-1 mRNA was not tested when absence of hemin, 8h after treated with hemin of 20 μmol/L, we can test the HO-1 mRNA expression, and at 16h the expression is reach to the peak, 16h after treated hemin under different concentrations (10umol/l, 20umol/l, 30umol/l), we found the expression is in a dose-dependent manner. In the group of 10 umol/l and 20 umol/l, the survival of cells is significantly increased in comparison to the control and also have significantly difference in the two groups(p<0.05), in the group of 20 μmol/L, 16h to 48h after hemin-induced, the survival of cells presents a time-dependent manner. In the group of 10μmol/L and 20 μmol/L, exposure of K562 cells to STI571 resulted in a substantial decrease of cell viability in comparison to the STI571 single treatment group(p<0.05). ZnPPIX-induced HO-1 inhibition leads to induction of apoptosis in K562 cells, having significant difference with the control group(p<0.05). ZnPPIX-induced HO-1 inhibition can suppress the survival of imatinib-resistant cells(p<0.05). Conclusion: our studies have shown that hemin-induced HO-1 gene expression may promote the proliferation of K562 cells, and can against the cell apoptosis. And we found hemin-induced HO-1 gene expression can protect K562 cells against STI571-induced apoptosis, ZnPPIX-induced HO-1 inhibition leads to decreased viability of imatinb-resistant CML cells. these all indicates HO-1 may represent a novel targeting in CML.


Sign in / Sign up

Export Citation Format

Share Document