scholarly journals Manipulation of Fatty Acid Metabolism Impairs Megakaryocyte Differentiation and Platelet Production

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 577-577
Author(s):  
Maria N. Barrachina ◽  
Gerard Pernes ◽  
Isabelle C Becker ◽  
Dafna Groeneveld ◽  
James P. Luyendyk ◽  
...  

Abstract Background: Obesity is associated with an altered plasma lipid composition that impacts platelet activation, indicating that lipids directly affect platelet function and reactivity. However, very little is known about which essential lipids are important to enable platelet production from their precursors, megakaryocytes (MKs), and whether obesity influences lipid composition and consequently affects thrombopoiesis. Aim: We aimed to determine which lipids and associated pathways play a significant role in MK differentiation and platelet production in health and upon obesity. Our long-term goal is to determine if we can manipulate MK maturation and platelet production through lipid incorporation or inhibition. Methods: In order to determine the lipid profile of MKs through maturation, we performed an extensive lipidomics screen on primary MK progenitors, mature MKs, and platelets. Based on our findings, we then targeted de novo fatty acid (FA) synthesis in MKs to determine whether manipulation of this pathway attenuates MK differentiation and platelet formation. In parallel, we investigated megakaryo- and thrombopoiesis in an experimental setting of diet-induced obesity (DIO) in mice to examinate how altered lipid compositions within the plasma affect MK maturation. Results: Lipidomic data revealed increased polyunsaturated FA and plasmalogen content in the late stages of MKs maturation, suggesting that lipid composition is undergoing changes that may enable platelet production. To validate and extend these results, we inhibited multiple enzymes in de novo lipogenesis and FA synthesis. Using two different sources of primary murine hematopoietic stem cells (HSCs), we found that MK differentiation and maturation from HSCs was significantly decreased up to 60% after inhibition of acetyl-coA carboxylase (ACC) and 80% after fatty acid synthetase (FASN) inhibition, both enzymes from the de novo lipogenesis pathway. Moreover, we also found that MK differentiation and maturation were highly decreased (up to 70%) after the inhibition of acyl-coA synthetase (ACS). To further examine the role of fatty acids incorporation on platelet production, we next treated mature MKs with an ACS inhibitor to investigate the direct effect of FA incorporation on proplatelet formation; we observed a significant, multifoldreduction in proplatelet area. While dihydroceramides were altered in the lipidomic data, impairment of the de novo ceramide synthesis pathway did not affect either MK maturation or platelet production. Moreover, we observed an increased abundance of HSCs, myeloid cells, and MK progenitors in the bone marrow of DIO mice compared to control mice on a chow diet. This further supports an important role for lipids in megakaryopoiesis and suggests that differences in platelet reactivity during obesity may be caused by altered MK maturation and/or platelet production. Conclusions: Our results elucidate an important and previously unrecognized role for fatty acid synthesis in megakaryopoiesis and platelet production. The findings imply that an altered lipid content, as observed in patients with obesity, may not only impact platelet reactivity but also MK maturation and function. Consequently, platelets with an altered lipid content might originate from pathogenic MKs in obesity, which makes lipid-regulating proteins in MKs novel and viable therapeutic targets. Disclosures Machlus: KEROS Therapeutics: Consultancy, Honoraria; STRM.BIO: Consultancy, Honoraria.

1976 ◽  
Vol 54 (6) ◽  
pp. 578-582 ◽  
Author(s):  
Mary Mes-Hartree ◽  
John B. Armstrong

The total lipid content, amount of phospholipid, proportions of major polar and neutral lipid classes, and the overall fatty acid composition were examined in Xenopus laevis embryos. No obvious differences were observed in any of the parameters between fertilization and hatching, or between eggs produced by different females. The average lipid content per egg was 113 μg, 31.6 μg of which was phospholipid. The major phospholipids were phosphatidylcholine and sphingomyelin. The major fatty acids were palmitic and oleic acids, but polyunsaturated fatty acids were also present in substantial amounts. The results suggest that significant de novo synthesis of lipids does not occur until after hatching.


2011 ◽  
Vol 39 (2) ◽  
pp. 495-499 ◽  
Author(s):  
Caroline A. Lewis ◽  
Beatrice Griffiths ◽  
Claudio R. Santos ◽  
Mario Pende ◽  
Almut Schulze

In recent years several reports have linked mTORC1 (mammalian target of rapamycin complex 1) to lipogenesis via the SREBPs (sterol-regulatory-element-binding proteins). SREBPs regulate the expression of genes encoding enzymes required for fatty acid and cholesterol biosynthesis. Lipid metabolism is perturbed in some diseases and SREBP target genes, such as FASN (fatty acid synthase), have been shown to be up-regulated in some cancers. We have previously shown that mTORC1 plays a role in SREBP activation and Akt/PKB (protein kinase B)-dependent de novo lipogenesis. Our findings suggest that mTORC1 plays a crucial role in the activation of SREBP and that the activation of lipid biosynthesis through the induction of SREBP could be part of a regulatory pathway that co-ordinates protein and lipid biosynthesis during cell growth. In the present paper, we discuss the increasing amount of data supporting the potential mechanisms of mTORC1-dependent activation of SREBP as well as the implications of this signalling pathway in cancer.


2021 ◽  
Author(s):  
Caterina Bartolacci ◽  
Cristina Andreani ◽  
Goncalo Dias do Vale ◽  
Stefano Berto ◽  
Margherita Melegari ◽  
...  

Mutant KRAS (KM) is the most common oncogene in lung cancer (LC). KM regulates several metabolic networks, but their role in tumorigenesis is still not sufficiently characterized to be exploited in cancer therapy. To identify metabolic networks specifically deregulated in KMLC, we characterized the lipidome of genetically engineered LC mice, cell lines, patient derived xenografts and primary human samples. We also determined that KMLC, but not EGFR-mutant (EGFR-MUT) LC, is enriched in triacylglycerides (TAG) and phosphatidylcholines (PC). We also found that KM upregulates fatty acid synthase (FASN), a rate-limiting enzyme in fatty acid (FA) synthesis promoting the synthesis of palmitate and PC. We determined that FASN is specifically required for the viability of KMLC, but not of LC harboring EGFR-MUT or wild type KRAS. Functional experiments revealed that FASN inhibition leads to ferroptosis, a reactive oxygen species (ROS)-and iron-dependent cell death. Consistently, lipidomic analysis demonstrated that FASN inhibition in KMLC leads to accumulation of PC with polyunsaturated FA (PUFA) chains, which are the substrate of ferroptosis. Integrating lipidomic, transcriptome and functional analyses, we demonstrated that FASN provides saturated (SFA) and monounsaturated FA (MUFA) that feed the Lands cycle, the main process remodeling oxidized phospholipids (PL), such as PC. Accordingly, either inhibition of FASN or suppression of the Lands cycle enzymes PLA2 and LPCAT3, promotes the intracellular accumulation of lipid peroxides and ferroptosis in KMLC both in vitro and in vivo. Our work supports a model whereby the high oxidative stress caused by KM dictates a dependency on newly synthesized FA to repair oxidated phospholipids, establishing a targetable vulnerability. These results connect KM oncogenic signaling, FASN induction and ferroptosis, indicating that FASN inhibitors already in clinical trial in KMLC patients (NCT03808558) may be rapidly deployed as therapy for KMLC.


2018 ◽  
Vol 315 (3) ◽  
pp. E386-E393 ◽  
Author(s):  
Corin O. Miller ◽  
Xiaodong Yang ◽  
Ku Lu ◽  
Jin Cao ◽  
Kithsiri Herath ◽  
...  

Fructose consumption in humans and animals has been linked to enhanced de novo lipogenesis, dyslipidemia, and insulin resistance. Hereditary deficiency of ketohexokinase (KHK), the first enzymatic step in fructose metabolism, leads to essential fructosuria in humans, characterized by elevated levels of blood and urinary fructose following fructose ingestion but is otherwise clinically benign. To address whether KHK deficiency is associated with altered glucose and lipid metabolism, a Khk knockout (KO) mouse line was generated and characterized. NMR spectroscopic analysis of plasma following ingestion of [6-13C] fructose revealed striking differences in biomarkers of fructose metabolism. Significantly elevated urine and plasma 13C-fructose levels were observed in Khk KO vs. wild-type (WT) control mice, as was reduced conversion of 13C-fructose into plasma 13C-glucose and 13C-lactate. In addition, the observation of significant levels of fructose-6-phosphate in skeletal muscle tissue of Khk KO, but not WT, mice suggests a potential mechanism, whereby fructose is metabolized via muscle hexokinase in the absence of KHK. Khk KO mice on a standard chow diet displayed no metabolic abnormalities with respect to ambient glucose, glucose tolerance, body weight, food intake, and circulating trigylcerides, β-hydroxybutyrate, and lactate. When placed on a high-fat and high-fructose (HF/HFruc) diet, Khk KO mice had markedly reduced liver weight, triglyceride levels, and insulin levels. Together, these results suggest that Khk KO mice may serve as a good model for essential fructosuria in humans and that inhibition of KHK offers the potential to protect from diet-induced hepatic steatosis and insulin resistance.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
R Kannan Mutharasan ◽  
Amritha T Singh ◽  
Kaylin M McMahon ◽  
C Shad Thaxton

Background: Reverse cholesterol transport, the process by which cholesterol is effluxed from cells to high-density lipoproteins (HDL) and is delivered to the liver for clearance, is a promising pathway to augment for treatment of atherosclerosis. Though structure-function relationships for nascent, discoidal HDL and cholesterol efflux have been well studied, how the lipid composition of spherical HDL species - which varies in pathophysiological conditions - impacts their ability to mediate cholesterol efflux has not been investigated. Methods and Results: Spherical gold nanoparticles (5 nm) were used to synthesize spherical HDL analogs (HDL-NP) by adding ApoAI protein, and various lipids. With this strategy a panel of HDL-NP varying in lipid content was generated. HDL-NP designs tested include: dipalmitylphosphatidylcholine (DPPC, saturated fatty acid), dioleoylphosphatidylcholine (DOPC, unsaturated fatty acid), sphingomyelin, lysophosphatidylcholine (LPC), and mixtures thereof. All of these species are found in natural HDL. After characterizing protein and lipid stoichiometry of the purified HDL-NP, these HDL-NP designs were tested in the cellular reverse cholesterol transport assay using J774 mouse macrophages. These studies demonstrate that all HDL-NP designs mediate more efflux than equimolar amounts of ApoAI protein control, and further demonstrate that HDL-NP designs incorporating unsaturated phospholipid (DOPC), sphingomyelin, and LPC - each of which can increase disorder in the lipid membrane and thus give rise to opportunity for cholesterol to intercalate and bind - enhance cholesterol efflux compared to saturated phospholipid (DPPC) design. Conclusion: In summary, these results demonstrate that lipid content of HDL-NP - analogs of spherical HDL - dictates cholesterol efflux function, a finding which sheds light on the functional importance of lipid content variation seen in mature, spherical HDL species.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi169-vi169
Author(s):  
Kevin Murnan ◽  
Serena Tommasini-Ghelfi ◽  
Lisa Hurley ◽  
Corey Dussold ◽  
Daniel Wahl ◽  
...  

Abstract Increased de novo synthesis, mobilization and uptake of fatty acids are required to provide sufficient lipids for membrane biogenesis in support of rapid tumor cell division and growth. In addition to their structural roles as components of the plasma membrane, fatty acid-derived lipids regulate ferroptotic cell death, a type of programmed cell death, when oxidized by iron-dependent lipoxygenase enzymes. De novo lipogenesis and the defense against oxidative lipid damage require large amounts of cytosolic NADPH. Our group has recently found that HGG up-regulate wild-type Isocitrate dehydrogenase 1 (referred to hereafter as ‘wt-IDH1high HGG’) to generate large quantities of cytosolic NADPH. RNAi-mediated knockdown of wt-IDH1, alone and in combination with radiation therapy (RT), slows the growth of patient-derived HGG xenografts, while overexpression of wt-IDH1 promotes intracranial HGG growth. Isotope tracer and liquid chromatography-based lipidomic studies indicated that wt-IDH1 supports the de novo biosynthesis of mono-unsaturated fatty acids (MUFAs) and promotes the incorporation of monounsaturated phospholipids into the plasma membrane, while displacing polyunsaturated fatty acid (PUFA) phospholipids. In addition, enhanced NADPH production in wt-IDH1high HGG increases glutathione (GSH) level, reduces reactive oxygen species (ROS), activates the phospholipid peroxidase glutathione peroxidase 4 (GPX4)-driven lipid repair pathway, and dampens the accumulation of PUFA-containing lipid peroxides, known executioners of ferroptosis. To pharmacologically target wt-IDH1,we have used and characterized wt-IDH1i-13, a first-in-class competitive α,β-unsaturated enone (AbbVie). wt-IDH1i-13 potently inhibits wt-IDH1 enzymatic activity, by covalently binding to the NADP+ binding pocket. Our data indicate that wt-IDH1i-13 promotes ferroptosis, which can be rescued by pre-treatment of cells with the peroxyl scavenger and ferroptosis inhibitor ferrostatin. wt-IDH1i-13 is brain-penetrant, and similar to genetic ablation, reduces progression and extends the survival of wt-IDH1high HGG bearing mice, alone and in combination with RT. These studies credential to wt-IDH1i-13 as a novel therapeutic modality for the treatment of wt-IDH1 gliomas.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marina Arregui ◽  
Hillary Lane Glandon ◽  
Yara Bernaldo de Quirós ◽  
Idaira Felipe-Jiménez ◽  
Francesco Consoli ◽  
...  

Abstract Lipids are biomolecules present in all living organisms that, apart from their physiological functions, can be involved in different pathologies. One of these pathologies is fat embolism, which has been described histologically in the lung of cetaceans in association with ship strikes and with gas and fat embolic syndrome. To assess pathological lung lipid composition, previous knowledge of healthy lung tissue lipid composition is essential; however, these studies are extremely scarce in cetaceans. In the present study we aimed first, to characterize the lipids ordinarily present in the lung tissue of seven cetacean species; and second, to better understand the etiopathogenesis of fat embolism by comparing the lipid composition of lungs positive for fat emboli, and those negative for emboli in Physeter macrocephalus and Ziphius cavirostris (two species in which fat emboli have been described). Results showed that lipid content and lipid classes did not differ among species or diving profiles. In contrast, fatty acid composition was significantly different between species, with C16:0 and C18:1ω9 explaining most of the differences. This baseline knowledge of healthy lung tissue lipid composition will be extremely useful in future studies assessing lung pathologies involving lipids. Concerning fat embolism, non-significant differences could be established between lipid content, lipid classes, and fatty acid composition. However, an unidentified peak was only found in the chromatogram for the two struck whales and merits further investigation.


Sign in / Sign up

Export Citation Format

Share Document