scholarly journals Hematopoietic stem cell function in β-thalassemia is impaired and is rescued by targeting the bone marrow niche

Blood ◽  
2020 ◽  
Vol 136 (5) ◽  
pp. 610-622 ◽  
Author(s):  
Annamaria Aprile ◽  
Alessandro Gulino ◽  
Mariangela Storto ◽  
Isabella Villa ◽  
Stefano Beretta ◽  
...  

Abstract Hematopoietic stem cells (HSCs) are regulated by signals from the bone marrow (BM) niche that tune hematopoiesis at steady state and in hematologic disorders. To understand HSC-niche interactions in altered nonmalignant homeostasis, we selected β-thalassemia, a hemoglobin disorder, as a paradigm. In this severe congenital anemia, alterations secondary to the primary hemoglobin defect have a potential impact on HSC-niche cross talk. We report that HSCs in thalassemic mice (th3) have an impaired function, caused by the interaction with an altered BM niche. The HSC self-renewal defect is rescued after cell transplantation into a normal microenvironment, thus proving the active role of the BM stroma. Consistent with the common finding of osteoporosis in patients, we found reduced bone deposition with decreased levels of parathyroid hormone (PTH), which is a key regulator of bone metabolism but also of HSC activity. In vivo activation of PTH signaling through the reestablished Jagged1 and osteopontin levels correlated with the rescue of the functional pool of th3 HSCs by correcting HSC-niche cross talk. Reduced HSC quiescence was confirmed in thalassemic patients, along with altered features of the BM stromal niche. Our findings reveal a defect in HSCs in β-thalassemia induced by an altered BM microenvironment and provide novel and relevant insight for improving transplantation and gene therapy approaches.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 967-967
Author(s):  
Annamaria Aprile ◽  
Alessandro Gulino ◽  
Isabella Villa ◽  
Stefano Beretta ◽  
Ivan Merelli ◽  
...  

Hematopoietic stem cells (HSC) are regulated by signals from the bone marrow (BM) niche and little is known about their fate in altered hematological conditions associated to non-malignant diseases. In β-thalassemia ineffective erythropoiesis and secondary alterations, as abnormal regulation of bone metabolism, iron overload and hormonal factors, induce changes in the BM homeostasis with a potential impact on HSC-niche interaction. We addressed these unexplored issues in the murine disease model and in patients' cells. We investigated hematopoiesis in thalassemic Hbbth3/+ (th3) mutant mice and we found lower frequency, reduced quiescence and reconstituting potential of HSC. th3 HSC have impaired self-renewal, which is rescued upon transplantation in a normal BM, proving an active role of the niche microenvironment. Both stromal and hematopoietic components of the BM niche are altered in th3 mice. Consistently with the common finding of osteoporosis in patients, we found reduced bone deposition with decreased levels of parathyroid hormone (PTH), which is a key regulator of bone metabolism but also of HSC activity. Low PTH negatively affects bone deposition and expression of the Notch-ligand Jag1 by th3 mesenchymal and osteolineage cells, thus reducing the activation of Notch1 in HSC and consequently impairing their function. In vivo activation of PTH signaling through the reestablished Jag1-Notch1 pathway restores the functional pool of th3 HSC by correcting HSC-niche crosstalk. In addition to the stromal component of the BM, hematopoietic cells with a key role in regulating the fate of HSC, such as megakaryocytes (Mk), were found defective in maturation, possibly due to reduced circulating levels of thrombopoietin (TPO). We are currently investigating the molecular causes of dysmegakaryopoiesis and the Mk-HSC interaction in thalassemic mice. Strikingly, reduced HSC quiescence was confirmed in samples from patients affected by β-thalassemia, along with impaired stromal niche and megakaryopoiesis, thus highlighting the clinical relevance of our findings. Further investigation will unravel the multiple molecular mechanisms that affect in trans HSC functions in the complexity of the stressed thalassemic BM microenvironment. Our results uncover a defect of HSC in β-thalassemia, induced by an altered BM niche and provide new relevant insight for improving transplantation and gene therapy approaches. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie-Theresa Weickert ◽  
Judith S. Hecker ◽  
Michèle C. Buck ◽  
Christina Schreck ◽  
Jennifer Rivière ◽  
...  

AbstractMyelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell disorders with a poor prognosis, especially for elderly patients. Increasing evidence suggests that alterations in the non-hematopoietic microenvironment (bone marrow niche) can contribute to or initiate malignant transformation and promote disease progression. One of the key components of the bone marrow (BM) niche are BM stromal cells (BMSC) that give rise to osteoblasts and adipocytes. It has been shown that the balance between these two cell types plays an important role in the regulation of hematopoiesis. However, data on the number of BMSC and the regulation of their differentiation balance in the context of hematopoietic malignancies is scarce. We established a stringent flow cytometric protocol for the prospective isolation of a CD73+ CD105+ CD271+ BMSC subpopulation from uncultivated cryopreserved BM of MDS and AML patients as well as age-matched healthy donors. BMSC from MDS and AML patients showed a strongly reduced frequency of CFU-F (colony forming unit-fibroblast). Moreover, we found an altered phenotype and reduced replating efficiency upon passaging of BMSC from MDS and AML samples. Expression analysis of genes involved in adipo- and osteogenic differentiation as well as Wnt- and Notch-signalling pathways showed significantly reduced levels of DLK1, an early adipogenic cell fate inhibitor in MDS and AML BMSC. Matching this observation, functional analysis showed significantly increased in vitro adipogenic differentiation potential in BMSC from MDS and AML patients. Overall, our data show BMSC with a reduced CFU-F capacity, and an altered molecular and functional profile from MDS and AML patients in culture, indicating an increased adipogenic lineage potential that is likely to provide a disease-promoting microenvironment.


Blood ◽  
2007 ◽  
Vol 110 (7) ◽  
pp. 2276-2285 ◽  
Author(s):  
Maria De La Luz Sierra ◽  
Paola Gasperini ◽  
Peter J. McCormick ◽  
Jinfang Zhu ◽  
Giovanna Tosato

The mechanisms underlying granulocyte-colony stimulating factor (G-CSF)–induced mobilization of granulocytic lineage cells from the bone marrow to the peripheral blood remain elusive. We provide evidence that the transcriptional repressor growth factor independence-1 (Gfi-1) is involved in G-CSF–induced mobilization of granulocytic lineage cells from the bone marrow to the peripheral blood. We show that in vitro and in vivo G-CSF promotes expression of Gfi-1 and down-regulates expression of CXCR4, a chemokine receptor essential for the retention of hematopoietic stem cells and granulocytic cells in the bone marrow. Gfi-1 binds to DNA sequences upstream of the CXCR4 gene and represses CXCR4 expression in myeloid lineage cells. As a consequence, myeloid cell responses to the CXCR4 unique ligand SDF-1 are reduced. Thus, Gfi-1 not only regulates hematopoietic stem cell function and myeloid cell development but also probably promotes the release of granulocytic lineage cells from the bone marrow to the peripheral blood by reducing CXCR4 expression and function.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 89-89 ◽  
Author(s):  
Laura M. Calvi ◽  
Benjamin J. Frisch ◽  
Benjamin J. Gigliotti ◽  
Christina A. Christianson ◽  
Jonathan M. Weber ◽  
...  

Abstract Parathyroid Hormone (PTH) targets osteoblastic cells (OBs) in the bone marrow microenvironment and expands hematopoietic stem cells (HSC) through Notch activation. Since PTH stimulates the Notch ligand Jagged1 (J1) in OBs, we have focused on the signaling pathways involved in this PTH effect in order to identify novel activators of the HSC niche. Osteoblastic Protein Kinase A (PKA) activation is required for the PTH-dependent J1 increase in OBs. Therefore, we hypothesized that alternative PKA activators could also regulate osteoblastic J1, alter the HSC niche, and provide additional pharmacologic tools to expand HSC in vivo. Consistent with this hypothesis, direct PKA agonists 8-bromo-cAMP and dibutyryl-cAMP stimulated J1 in osteoblastic UMR106 cells. In addition, PGE2, a member of the prostaglandin family known to stimulate PKA in OBs, was studied in vivo and in vitro. By real-time RT-PCR analysis, J1 mRNA was increased up to 5 fold at 2 hours in UMR106 cells when treated with PGE2 (10−7 M) compared to vehicle. J1 protein was also increased after treatment with PGE2. The PGE2-dependent J1 increase was blocked in the presence of the specific PKA inhibitors H89 and myristoylated PKA Inhibitory Peptide (14–22)(PKI) (200ug/ml), demonstrating that PKA is necessary for osteoblastic J1 stimulation by PGE2. Since systemic PGE2 is known to have bone anabolic effects in both humans and animal models, adult wild-type FVB/N male mice were treated with PGE2 (6mg/kg/day i.p.) for 12 days. This regimen has previously been shown to have bone anabolic effects in rats. At day 12, histologic analysis demonstrated an anabolic effect mainly on cortical bone, as was evident in the femurs and tibiae of PGE2-treated mice compared to control. This histologic finding was confirmed by histomorphometry (trabecular bone area means 41% vs 12%,p=0.0916, n=3 in both groups; cortical thickness means 138 vs 85 μm, p=0.0071, n=3 in both groups). Frequency of hematopoietic stem cells (c-Kit+, Sca1+, lin−) was increased in bone marrow from PGE2-treated vs control mice by over 20% (p=0.0018, n=8 in both groups). In summary, PGE2 stimulates J1 in osteoblastic cells through PKA activation and increases mainly cortical bone in vivo. Ongoing studies will confirm whether in vivo PGE2 treatment expands HSC, and whether osteoblastic J1 regulates this process. This study identifies PGE2 as a novel regulator of osteoblastic J1, and as a potential new microenvironmental modulator of HSC, which could be used for in vivo therapeutic HSC niche manipulation.


Blood ◽  
2012 ◽  
Vol 120 (15) ◽  
pp. 3001-3006 ◽  
Author(s):  
Andreas Weigert ◽  
Benjamin Weichand ◽  
Divya Sekar ◽  
Weixiao Sha ◽  
Christina Hahn ◽  
...  

Abstract Hypoxia-inducible factors (HIFs) regulate hematopoiesis in the embryo and maintain hematopoietic stem cell function in the adult. How hypoxia and HIFs contribute to hematopoietic lineage differentiation in the adult is ill defined. Here we provide evidence that HIF-1 limits differentiation of precursors into plasmacytoid dendritic cells (pDCs). Low oxygen up-regulated inhibitor of DNA binding 2 (ID2) and suppressed Flt3-L–induced differentiation of bone marrow cells to pDCs in wild-type but not HIF-1αfl/fl LysM-Cre bone marrow cells. Moreover, pDC differentiated normally in hypoxic ID2−/− bone marrow cultures. Finally, we observed elevated pDC frequencies in bone marrow, blood, and spleen of HIF-1αfl/fl LysM-Cre and ID2−/−, but not HIF-2αfl/fl LysM-Cre mice. Our data indicate that the low oxygen content in the bone marrow might limit pDC development. This might be an environmental mechanism to restrict the numbers of these potentially autoreactive cells.


Blood ◽  
1991 ◽  
Vol 78 (2) ◽  
pp. 318-322
Author(s):  
J Tsunoda ◽  
S Okada ◽  
J Suda ◽  
K Nagayoshi ◽  
H Nakauchi ◽  
...  

The treatment of mice with high doses of 5-fluorouracil (5-FU) results in an enrichment of primitive hematopoietic progenitors. Using this procedure, we obtained a new class of murine hematopoietic colonies that had very high secondary plating efficiencies in vitro and could differentiate into not only myeloid cells but also into lymphoid lineage cells. The phenotypes of interleukin-3 (IL-3) induced blast colony cells were Thy-1-positive and lineage-marker-negative. We examined whether these blast colony cells contained primitive hematopoietic stem cells in vivo and could reconstitute hematopoietic tissues in lethally irradiated mice. Blast colony cells could generate macroscopic visible spleen colonies on days 8 and 12, and 5 x 10(3) blast cells were sufficient to protect them from lethally irradiation. It was shown that 6 or 8 weeks after transplantation of 5 x 10(3) blast cells, donor male cells were detected in the spleen and thymus of the female recipients but not in the bone marrow by Southern blot analysis using Y-encoded DNA probe. After 10 weeks, bone marrow cells were partially repopulated from donor cells. In a congenic mouse system, donor-derived cells (Ly5.2) were detected in the thymus and spleen 6 weeks after transplantation. Fluorescence-activated cell sorter analyses showed that B cells and macrophages developed from donor cells in the spleen. In the thymus, donor-derived cells were found in CD4, CD8 double-positive, single-positive, and double-negative populations. Reconstitution of bone marrow was delayed and myeloid and lymphoid cells were detected 10 weeks after transplantation. These results indicate that IL-3-induced blast cells contain the primitive hematopoietic stem cells capable of reconstituting hematopoietic organs in lethally irradiated mice.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 814-814
Author(s):  
Hitoshi Takizawa ◽  
Markus G Manz

Abstract Abstract 814 Hematopoietic stem cells (HSCs) are defined by their capacity to self-renew and give rise to all mature cells of hemato-lymphoid system for the lifetime of an individual. To ensure this, HSCs are kept at homeostatic levels in adult bone marrow. Steady-state HSC cycling kinetics have been evaluated by in vivo labeling assay using 5-bromo-2-deoxyuridine (BrdU) (Cheshier et. al., PNAS 1999; Kiel et al., Nature 2007), biotin (Nygren et. al., PLoS ONE 2008) and histon 2B-green fluorescent protein (H2B-GFP) transgenic model systems (Wilson et. al., Cell 2008; Foudi et. al., Nat. Biotech. 2008). Based on the latter, it was suggested that one HSC pool turns over faster than another, dormant pool with very limited divisions during a lifetime. However, the fast cycling HSCs did not have long-term multilineage reconstitution capacity in lethally irradiated animals in contrast to dormant HSCs (Wilson et. al., Cell 2008; Foudi et.al., Nat. Biotech. 2008). From these experiments remained unclear, whether the faster cycling HSC loose long-term repopulation potential according to divisional history, or whether they represent progenitors with limited self-renewal potential, sharing a long-term HSC phenotype. Therefore, the dynamics of steady-state long-term HSC homeostasis and blood production remains to be determined. To address this directly, we set up an in vivo HSC divisional tracking assay. Here we show i.v. transfer of CFSE (carboxyfluorescein diacetate succinimidyl ester) -labeled HSCs into non-conditioned CD45.1/2 congenic F1 recipient mice that allows evaluation of steady-state HSC dynamics as CFSE distributes equally to daughter cells upon each cellular division. Sorted naïve CD4+CD62L+ T cells were used as non-dividing control cell population to determine the zero division CFSE staining level over time. Upon transfer of Lin-c-kit+Sca-1+ cells (LKS) into sublethally irradiated mice, all donor derived Lin-c-kit+ cells had divided >5 times after 3 weeks. However, transfer of LKS cells into non-irradiated mice revealed non-divided LKS cells in recipient bone marrow over 20 weeks. FACS analysis with HSC or progenitor specific marker expression showed that most of 0-2 time-divided and few of >5x divided LKS cells maintained a long-term HSC phenotype (CD150+, c-mpl+, CD34-). In order to test HSC potential, non- or >5x divided cells were sorted based on divisional history from primary recipients at different time points after transplantation, and competitively transplanted into lethally irradiated secondary recipients. At 3 weeks post primary transfer, single non-divided LKS cell was able to multi-lineage repopulate recipients, while 50 of >5x divided LKS cells showed no engraftment. Interestingly, both non- and >5x divided LKS cells at 7 or 12-14 weeks after primary transfer had long-term multilineage repopulating potential. Limiting dilution transplantation experiments demonstrated that HSC with long-term multilineage capacity (LT-HSC) were maintained at constant numbers that fit the numbers of free bone marrow niche space, with non-divided LT-HSC decreasing and >5x divided LT-HSC increasing with a constant division rate. We next tested the effects of hemato-immunological challenge on HSC cycling dynamics. Upon i.p. LPS injection into mice, previously transplanted with CFSE-labeled LKS, almost all LT-HSCs entered cell cycle within one week after challenge. These findings directly demonstrate that some LT-HSCs are quiescent for up to one fifth of the life-time of a mouse, while other LT-HSCs divide more actively, thus proving asynchronous LT-HSC division and contribution to hematopoiesis in steady-state. In addition, the results demonstrate that quiescent LT-HSCs are driven into division in response to naturally-occurring hematopoietic challenges, such as systemic bacterial infection. The CFSE-tracking model established here now allows to directly test the role of intrinsic versus environmental cues on cycling-dynamics of HSCs as well as leukemia initiating cells in steady-state and upon challenge on multiple genetic and different species background. Disclosures: No relevant conflicts of interest to declare.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 614 ◽  
Author(s):  
Claire Fielding ◽  
Simón Méndez-Ferrer

The bone marrow (BM) is the primary site of postnatal hematopoiesis and hematopoietic stem cell (HSC) maintenance. The BM HSC niche is an essential microenvironment which evolves and responds to the physiological demands of HSCs. It is responsible for orchestrating the fate of HSCs and tightly regulates the processes that occur in the BM, including self-renewal, quiescence, engraftment, and lineage differentiation. However, the BM HSC niche is disturbed following hematological stress such as hematological malignancies, ionizing radiation, and chemotherapy, causing the cellular composition to alter and remodeling to occur. Consequently, hematopoietic recovery has been the focus of many recent studies and elucidating these mechanisms has great biological and clinical relevance, namely to exploit these mechanisms as a therapeutic treatment for hematopoietic malignancies and improve regeneration following BM injury. The sympathetic nervous system innervates the BM niche and regulates the migration of HSCs in and out of the BM under steady state. However, recent studies have investigated how sympathetic innervation and signaling are dysregulated under stress and the subsequent effect they have on hematopoiesis. Here, we provide an overview of distinct BM niches and how they contribute to HSC regulatory processes with a particular focus on neuronal regulation of HSCs under steady state and stress hematopoiesis.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Longfei Gao ◽  
Matthew Decker ◽  
Haidee Chen ◽  
Lei Ding

The bone marrow niche plays a critical role in hematopoietic recovery and hematopoietic stem cell (HSC) regeneration after myeloablative stress. However, it is not clear whether systemic factors beyond the local niche are required for these essential processes in vivo. Thrombopoietin (THPO) is a critical cytokine promoting hematopoietic rebound after myeloablation and its transcripts are expressed by multiple cellular sources. The upregulation of bone marrow-derived THPO has been proposed to be crucial for hematopoietic recovery and HSC regeneration after stress. Nonetheless, the cellular source of THPO in myeloablative stress has never been investigated genetically. We assessed the functional sources of THPO following two common myeloablative perturbations: 5-fluorouracil (5-FU) administration and irradiation. Using a Thpo translational reporter, we found that the liver but not the bone marrow is the major source of THPO protein after myeloablation. Mice with conditional Thpo deletion from osteoblasts and/or bone marrow stromal cells showed normal recovery of HSCs and hematopoiesis after myeloablation. In contrast, mice with conditional Thpo deletion from hepatocytes showed significant defects in HSC regeneration and hematopoietic rebound after myeloablation. Thus, systemic THPO from the liver is necessary for HSC regeneration and hematopoietic recovery in myeloablative stress conditions.


2021 ◽  
Author(s):  
Lei Ding ◽  
Longfei Gao ◽  
Matthew Decker ◽  
Haidee Chen

The bone marrow niche plays a critical role in hematopoietic recovery and hematopoietic stem cell (HSC) regeneration after myeloablation. However, it is not clear whether systemic factors beyond the local niche are required for these essential processes in vivo. Thrombopoietin (TPO) is a critical cytokine promoting hematopoietic rebound after myeloablation and its transcripts are expressed by multiple cellular sources. The upregulation of bone marrow-derived TPO has been proposed to be crucial for hematopoietic recovery and HSC regeneration after stress. Nonetheless, the cellular source of TPO in stress has never been investigated genetically. We assessed the functional sources of TPO following two common myeloablative perturbations: 5-fluorouracil (5-FU) administration and irradiation. Using a Tpo translational reporter, we found that the liver but not the bone marrow is the major source of TPO protein after myeloablation. Mice with conditional Tpo deletion from osteoblasts or bone marrow stromal cells showed normal recovery of HSCs and hematopoiesis after myeloablation. In contrast, mice with conditional Tpo deletion from hepatocytes showed significant defects in HSC regeneration and hematopoietic rebound after myeloablation. Thus, systemic TPO from the liver is necessary for HSC regeneration and hematopoietic recovery in myeloablative stress conditions.


Sign in / Sign up

Export Citation Format

Share Document