Structural Analysis of Janus Kinases.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3863-3863
Author(s):  
Titus J. Boggon ◽  
Yiqun Li ◽  
Michael J. Eck

Abstract Janus Kinase 3 (Jak3) plays an essential role in hematopoietic signaling. Primarily expressed in B-, T- and Natural killer cells, it is activated through the γc chain of interleukin-2 like cytokine receptors (IL-2, -4, -7, -9, -15, -21). Deficiency of catalytically active Jak3 or disruption of the Jak3:IL-2γc interaction results in severe combined immunodeficiency (SCID). Jak3-deficient humans demonstrate defects restricted to the immune system, suggesting that selective inhibition of Jak3 catalytic activity or interruption of the Jak3:IL-2γc interaction are potentially exploitable strategies to achieve immunosuppression. Jak kinases contain four defined regions; a catalytically active carboxy-terminal kinase, a pseudo-kinase, a SH2-like region and a N-terminal Ferm domain. To date, no direct structural information has been reported for portions of any of the Jak family kinases. Structural studies are underway to define crystallographically the kinase domain of Jak3 and the Jak3-Ferm:IL-2γc interaction. Structural insights into the mechanism of Jak activation and routes to specific inhibition will be discussed.

1996 ◽  
Vol 319 (3) ◽  
pp. 865-872 ◽  
Author(s):  
M. Grazia MALABARBA ◽  
Hallgeir RUI ◽  
Harald H. J. DEUTSCH ◽  
Johanna CHUNG ◽  
Frank S. KALTHOFF ◽  
...  

The lymphocyte growth factors interleukin-2 (IL2), IL4, IL7, IL9 and IL15 use the common IL2 receptor-γ (IL2Rγ) and activate the IL2Rγ-associated tyrosine kinase JAK3 (Janus kinase 3). IL13 is structurally related to IL4, competes with IL4 for binding to cell surface receptors and exhibits many similar biological effects. The molecular basis for this functional overlap between IL4 and IL13 has been attributed mainly to a shared use of the 140 kDa IL4Rα, since these cytokines appear to be uniquely different in that, according to several recent reports, IL13 does not recruit the IL2Rγ or JAK3. This notion has been supported by the identification of a novel 70 kDa IL13 receptor in certain IL13-responsive cell lines that lack IL2Rγ. The present study sheds new light on the issue of functional overlap between IL13 and IL4, by demonstrating for the first time that, in cells that express both IL2Rγ and IL4Rα, IL13 can mimic IL4-induced heterodimerization of IL2Rγ and IL4Rα, with consequent marked activation of JAK3 and the transcription factor STAT6 (IL4-STAT). Reconstitution experiments in BA/F3 cells showed that both cytokines require the simultaneous presence of IL4Rα and IL2Rγ to mediate JAK3 and proliferative responses, and analysis of 12 IL4Rα variants showed that IL4 and IL13 signals were equally affected by mutations of the cytoplasmic domain. We conclude that IL13 activates the IL2Rγ-associated JAK3 tyrosine kinase in appropriate cell types, and propose that IL13 is capable of interacting with multiple receptor subunits in a cell-dependent and combinatorial manner. Consequently, we predict that partial disruption of IL13 signal transduction also contributes to the severe combined immunodeficiency syndromes associated with inactivation of the IL2Rγ or JAK3 genes.


Blood ◽  
2004 ◽  
Vol 103 (6) ◽  
pp. 2009-2018 ◽  
Author(s):  
Joseph L. Roberts ◽  
Andrea Lengi ◽  
Stephanie M. Brown ◽  
Min Chen ◽  
Yong-Jie Zhou ◽  
...  

Abstract We found 10 individuals from 7 unrelated families among 170 severe combined immunodeficiency (SCID) patients who exhibited 9 different Janus kinase 3 (JAK3) mutations. These included 3 missense and 2 nonsense mutations, 1 insertion, and 3 deletions. With the exception of 1 individual with persistence of transplacentally transferred maternal lymphocytes, all infants presented with a T–B+NK– phenotype. The patient mutations all resulted in abnormal B-cell Janus kinase 3 (JAK3)–dependent interleukin-2 (IL-2)–induced signal transducer and activator of transcription-5 (STAT5) phosphorylation. Additional analyses of mutations permitting protein expression revealed the N-terminal JH7 (del58A) and JH6 (D169E) domain mutations each inhibited receptor binding and catalytic activity, whereas the G589S JH2 mutation abrogated kinase activity but did not affect γc association. Nine of the 10 patients are currently alive from between 4 years and 18 years following stem cell transplantation, with all exhibiting normal T-cell function. Reconstitution of antibody function was noted in only 3 patients. Natural killer (NK) function was severely depressed at presentation in the 4 patients studied, whereas after transplantation the only individuals with normal NK lytic activity were patients 1 and 5. Hence, bone marrow transplantation is an effective means for reconstitution of T-cell immunity in this defect but is less successful for restoration of B-cell and NK cell functions.


Blood ◽  
2005 ◽  
Vol 106 (3) ◽  
pp. 996-1002 ◽  
Author(s):  
Titus J. Boggon ◽  
Yiqun Li ◽  
Paul W. Manley ◽  
Michael J. Eck

AbstractJak (Janus kinase) family nonreceptor tyrosine kinases are central mediators of cytokine signaling. The Jak kinases exhibit distinct cytokine receptor association profiles and so transduce different signals. Jak3 expression is limited to the immune system, where it plays a key role in signal transduction from cytokine receptors containing the common gamma-chain, γc. Patients unable to signal via γc present with severe combined immunodeficiency (SCID). The finding that Jak3 mutations result in SCID has made it a target for development of lymphocyte-specific immunosuppressants. Here, we present the crystal structure of the Jak3 kinase domain in complex with staurosporine analog AFN941. The kinase domain is in the active conformation, with both activation loop tyrosine residues phosphorylated. The phosphate group on pTyr981 in the activation loop is in part coordinated by an arginine residue in the regulatory C-helix, suggesting a direct mechanism by which the active position of the C-helix is induced by phosphorylation of the activation loop. Such a direct coupling has not been previously observed in tyrosine kinases and may be unique to Jak kinases. The crystal structure provides a detailed view of the Jak3 active site and will facilitate computational and structure-directed approaches to development of Jak3-specific inhibitors.


Blood ◽  
1997 ◽  
Vol 90 (10) ◽  
pp. 3996-4003 ◽  
Author(s):  
Fabio Candotti ◽  
Scott A. Oakes ◽  
James A. Johnston ◽  
Silvia Giliani ◽  
Richard F. Schumacher ◽  
...  

Abstract Mutations of the Janus family kinase JAK3 have been found to be responsible for autosomal recessive severe combined immunodeficiency (SCID) in humans. We report here the analysis of four new unrelated patients affected by JAK3-deficient SCID. The genetic defects were heterogeneous and included a large intragenic deletion as well as different point mutations, leading to missense substitutions, early stop codons, or splicing defects. We performed a series of studies of the biochemical events induced by cytokines on lymphoblastoid B-cell lines obtained from these patients. Abnormalities in tyrosine phosphorylation of JAK3 in response to interleukin-2 (IL-2) and IL-4 were present in all patients. Accordingly, IL-2–mediated phosphorylation of STAT5 was also absent or barely detectable. On the contrary, in all cases, we could show reduced but clear phosphorylation of STAT6 upon IL-4 stimulation. In one patient carrying a single amino acid change (Glu481Gly) in the JH3 domain of JAK3, we observed partially conserved IL-2 responses resulting in reduced but detectable levels of JAK3 and STAT5 phosphorylation. Interestingly, the patient bearing this mutation developed a substantial number of circulating CD4+/CD45RO+ activated T lymphocytes that were functionally impaired. In two cases, patients' cells expressed JAK3 proteins with mutations in the JH2 pseudo-kinase domain. A single cysteine to arginine substitution (Cys759Arg) in this region resulted in high basal levels of constitutive JAK3 tyrosine phosphorylation unresponsive to either downregulation by serum starvation or cytokine-mediated upregulation. The characterization of the genetic defects and biochemical abnormalities in these JAK3-deficient patients will help define the role of JAK3 in the ontogeny of a competent immune system and may lead to a better understanding of the JAK3 functional domains.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 889 ◽  
Author(s):  
Okada ◽  
Vaeteewoottacharn ◽  
Kariya

Patient-derived xenograft (PDX) models are created by engraftment of patient tumor tissues into immunocompetent mice. Since a PDX model retains the characteristics of the primary patient tumor including gene expression profiles and drug responses, it has become the most reliable in vivo human cancer model. The engraftment rate increases with the introduction of Non-obese diabetic Severe combined immunodeficiency (NOD/SCID)-based immunocompromised mice, especially the NK-deficient NOD strains NOD/SCID/interleukin-2 receptor gamma chain(IL2Rγ)null (NOG/NSG) and NOD/SCID/Jak3(Janus kinase 3)null (NOJ). Success rates differ with tumor origin: gastrointestinal tumors acquire a higher engraftment rate, while the rate is lower for breast cancers. Subcutaneous transplantation is the most popular method to establish PDX, but some tumors require specific environments, e.g., orthotropic or renal capsule transplantation. Human hormone treatment is necessary to establish hormone-dependent cancers such as prostate and breast cancers. PDX mice with human hematopoietic and immune systems (humanized PDX) are powerful tools for the analysis of tumor–immune system interaction and evaluation of immunotherapy response. A PDX biobank equipped with patients’ clinical data, gene-expression patterns, mutational statuses, tumor tissue architects, and drug responsiveness will be an authoritative resource for developing specific tumor biomarkers for chemotherapeutic predictions, creating individualized therapy, and establishing precise cancer medicine.


Blood ◽  
2005 ◽  
Vol 106 (9) ◽  
pp. 3227-3233 ◽  
Author(s):  
Kunihiro Yamaoka ◽  
Booki Min ◽  
Yong-Jie Zhou ◽  
William E. Paul ◽  
John J. O'Shea

AbstractCytokines are critical in regulating the development and function of diverse cells. Janus kinase 3 (Jak3) is a tyrosine kinase expressed in hematopoietic cells that associates with the common gamma chain (γc) and is required for signaling for a family of cytokines including interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15, and IL-21; deficiency of either Jak3 or γc results in severe combined immunodeficiency (SCID). While Jak3 is essential for lymphoid-cell development, the potential roles for Jak3 in regulating dendritic cells (DCs) were unclear. Herein, we show that although CD8+CD11c+ splenic DCs are absent in Jak3-/- mice, bone marrow–derived DCs developed normally in vitro from Jak3-/- precursor cells. In fact, the survival of Jak3-/- DCs was enhanced, and they expressed lower levels of proapoptotic proteins. Jak3-/- DCs exhibited normal antigen uptake and up-regulation of costimulatory molecules. However, Jak3-/- DCs produced more IL-12 and IL-10 in response to Toll-like receptor ligands, which correlated with enhanced T helper 1 (Th1) differentiation in vivo. In summary, Jak3 is not essential for DC development but unexpectedly appears to be an important negative regulator. These results may be relevant clinically for patients with SCID who have undergone hematopoietic stem cell transplantation and for patients who might be treated with a Jak3 inhibitor.


2003 ◽  
Vol 13 (18) ◽  
pp. 3105-3110 ◽  
Author(s):  
Christopher Adams ◽  
David J. Aldous ◽  
Shelley Amendola ◽  
Paul Bamborough ◽  
Colin Bright ◽  
...  

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1347.2-1347
Author(s):  
S. Y. Ki ◽  
H. Shin ◽  
Y. Lee ◽  
H. R. Bak ◽  
H. Yu ◽  
...  

Background:Janus kinases (JAK1, JAK2, JAK3, and TYK2) play critical roles in mediating various cytokine signaling, and has been developed as a target for autoimmune diseases such as RA. Tofacitinib, oral Pan-JAK inhibitor, demonstrated efficacy in RA patients, but its widespread use is limited by safety issues. Baricitinib, JAK1/2 inhibitor, is also known to interfere with the hematopoiesis system, such as anemia and thrombocytopenia associated with suppression of JAK2 signals. Therefore, it is necessary to develop a new potent compound that selectively inhibits JAK1 over JAK2, 3Objectives:To identify the pharmacological characteristic based on efficacy of CJ-15314 as potent and selective JAK1 inhibitor for treatment of autoimmune disease.Methods:In vitro, cell-based, kinase panel, Kd value and human whole blood assay were performed to determine the inhibition potency and selectivity for JAK subfamily kinases. In vivo therapeutic potential was evaluated by RA model including rat Adjuvant-Induced Arthritis (AIA) and collagen-induced arthritic (CIA). To confirm the possibility of further expansion into the autoimmune disease, BioMAP® Diversity PLUS® Panel was performed by discoverX.Results:In vitro assay, CJ-15314 inhibited JAK kinase family in a concentration-dependent manner with IC50 values of 3.8 nM against JAK1, Selectivity for JAK1 over JAK2, 3 was approximately 18, 83 fold greater for CJ-15314. In 1mM ATP condition, CJ-15314 has been confirmed to have the highest JAK1 selectivity over competing drugs, under 1 mM ATP condition that reflects the physiological environment in the body. Similarly, Kd values has also confirmed the selectivity of JAK1, which is 10 fold higher than JAK2, 3. Accordingly, in human whole blood assays, CJ-15314 is 11 fold more potent against IL-6 induced pSTAT1 inhibition through JAK1 (IC50 value: 70 nM) than GM-CSF-induced pSTAT5 inhibition (JAK2) whereas baricitinib and filgotinib exhibited only 2 fold and 7 fold respectively.In vivo efficacy model, CJ-15314 inhibited disease severity scores in a dose dependent manner. In the rat AIA model, CJ-15314 at 30 mg/kg dose showed 95.3% decrease in arthritis activity score, 51.2% in figotinib at 30 mg/kg, 97.7% showed baricitinib at 10 mg/kg. CJ-15314 showed superior anti-arthritic efficacy than filgotinib. CJ-15314 also minimally affected anemia-related parameters but not bricitinib end of the 2-week treatment. In the rat CIA model, like 10 mg/kg of bricitinib, 30 mg/kg of CJ-15314 also has a similar effect, with a significant reduction in histopathological scores.In biomap diversity panel, CJ-15314 inhibited the expression of genes such as MCP-1, VCAM-1, IP-10, IL-8, IL-1, sTNF-α and HLA-DR confirming the possibility of expansion into other diseases beyond arthritis.Conclusion:CJ-15314 is a highly selective JAK1 inhibitor, demonstrates robust efficacy in RA animal model and is good candidate for further development for inflammatory diseases.* CJ-15314 is currently conducting a phase I trial in south Korea.References:[1]Clark JD et al. Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J Med Chem. 2014; 57(12):5023-38.[2]Burmester GR et al. Emerging cell and cytokine targets in rheumatoid arthritis. Nat Rev Rheumatol. 2014; 10(2):77-88[3]Jean-Baptiste Telliez et al. Discovery of a JAK3-selective inhibitor: functional differentiation of JAK3-selective inhibition over pan-JAK or JAK1-selective inhibition. ACS Chem. Biol., 2016; 11 (12):3442-3451Disclosure of Interests:so young Ki Employee of: CJ healthcare, hyunwoo shin Employee of: CJ healthcare, yelim lee Employee of: CJ healthcare, Hyoung rok Bak Employee of: CJ healthcare, hana yu Employee of: CJ healthcare, Seung Chan Kim Employee of: CJ healthcare, juhyun lee Employee of: CJ healthcare, donghyun kim Employee of: CJ healthcare, Dong-hyun Ko Employee of: CJ Healthcare, dongkyu kim Employee of: CJ healthcare


2000 ◽  
Vol 20 (2) ◽  
pp. 702-712 ◽  
Author(s):  
Chi-Wing Chow ◽  
Roger J. Davis

ABSTRACT Calcium-stimulated nuclear factor of activated T cells (NFAT) transcription activity at the interleukin-2 promoter is negatively regulated by cyclic AMP (cAMP). This effect of cAMP is mediated, in part, by protein kinase A phosphorylation of NFAT. The mechanism of regulation involves the creation of a phosphorylation-dependent binding site for 14-3-3. Decreased NFAT phosphorylation caused by the calcium-stimulated phosphatase calcineurin, or mutation of the PKA phosphorylation sites, disrupted 14-3-3 binding and increased NFAT transcription activity. In contrast, NFAT phosphorylation caused by cAMP increased 14-3-3 binding and reduced NFAT transcription activity. The regulated interaction between NFAT and 14-3-3 provides a mechanism for the integration of calcium and cAMP signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document