Expression of the Chk2 Gene Is Downregulated in Hodgkin’s Lymphoma Cell Lines Via Epigenetic Mechanisms.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 429-429
Author(s):  
Naoko Kato ◽  
Takeshi Kondo ◽  
Junichi Tsukada ◽  
Yoshiya Tanaka ◽  
Yasuhiro Minami ◽  
...  

Abstract Chk2, the mammalian homologue of the yeast Rad53 and Cds1 genes, encodes a nuclear serine/threonine kinase that plays a crucial role in the DNA damage response and helps guard the integrity of the genome by regulating cell-cycle checkpoints, DNA repair and apoptosis. Furthermore Chk2 is regarded as a tumor suppressor gene. Alterations in tumor suppressors that are involved in the DNA damage response have been reported to be frequently involved in the pathogenesis of lymphoid malignancies. We investigated the expression levels of the genes encoding Chk2 in nine cell lines from lymphoid malignancies, including three Hodgkin’s lymphoma (HL) cell lines. We found that all three HL cell lines exhibited a drastic reduction in Chk2 mRNA and protein expression compared to the other cell lines without any apparent mutation of the Chk2 gene. Accumulating evidence demonstrates the importance of posttranslational modification of histone proteins in addition to DNA methylation, as epigenetic mechanisms involved in the organization of chromosomal domains and gene regulation. It is now generally appreciated that hyperacetylated histones H3 and H4 are associated with activated genomic regions, while hypoacetylation of histones H3, H4 and methylation on H3-lysine 9 results in gene repression and silencing. Therefore we tested the possibility that epigenetic mechanisms are involved in this aberrant expression of the Chk2 gene in these cells using the histone deacetylase (HDAC) inhibitors trichostatin A (TsA) and sodium butyrate (SB). Expression of Chk2 in HL cells was restored following treatment with the TsA and SB, or 5Aza-dC. Chromatin-immunoprecipitation (Chip) assays revealed that treatment of HL cells with TsA, SB or 5Aza-dC resulted in increased levels of acetylated histones H3 and H4, and decreased levels of dimethylated H3 lysine 9 at the Chk2 promoter. These results indicate that expression of the Chk2 gene is down-regulated in HL cells via epigenetic mechanisms. Furthermore we examined whether the down regulation of Chk2 gene in HL cells may be involved in apoptosis resistance to irradiation (IR). We found that upregulation of Chk2 in HL cells following treatment by SB resulted in increased susceptibility of the cells to IR. Therefore, our findings suggested that altered epigenetic regulation of Chk2 gene in HL cells results in the down-regulation of Chk2 kinase and abrogates DNA damage response signaling in the cells

2011 ◽  
Vol 414 (1) ◽  
pp. 123-128 ◽  
Author(s):  
Burcu Erbaykent-Tepedelen ◽  
Besra Özmen ◽  
Lokman Varisli ◽  
Ceren Gonen-Korkmaz ◽  
Bilge Debelec-Butuner ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A944-A944
Author(s):  
Anand Kornepati ◽  
Clare Murray ◽  
Barbara Avalos ◽  
Cody Rogers ◽  
Kavya Ramkumar ◽  
...  

BackgroundTumor surface-expressed programmed death-ligand 1 (PD-L1) suppresses immunity when it engages programmed death-1 (PD-1) on anti-tumor immune cells in canonical PD-L1/PD-1.1 Non-canonical, tumour-intrinsic PD-L1 signals can mediate treatment resistance2–6 but mechanisms remain incompletely understood. Targeting non-canonical, cell-intrinsic PD-L1 signals, especially modulation of the DNA damage response (DDR), remains largely untapped.MethodsWe made PD-L1 knockout (PD-L1 KO) murine transplantable and human cell lines representing melanoma, bladder, and breast histologies. We used biochemical, genetic, and cell-biology techniques for mechanistic insights into tumor-intrinsic PD-L1 control of specific DDR and DNA repair pathways. We generated a novel inducible melanoma GEMM lacking PD-L1 only in melanocytes to corroborate DDR alterations observed in PD-L1 KO of established tumors.ResultsGenetic tumor PD-L1 depletion destabilized Chk2 and impaired ATM/Chk2, but not ATR/Chk1 DDR. PD-L1KO increased DNA damage (γH2AX) and impaired homologous recombination DNA repair (p-RPA32, BRCA1, RAD51 nuclear foci) and function (DR-GFP reporter). PD-L1 KO cells were significantly more sensitive versus controls to DDR inhibitors (DDRi) against ATR, Chk1, and PARP but not ATM in multiple human and mouse tumor models in vitro and in vivo in NSG mice. PD-1 independent, intracellular, not surface PD-L1 stabilized Chk2 protein with minimal Chek2 mRNA effect. Mechanistically, PD-L1 could directly complex with Chk2, protecting it from PIRH2-mediated polyubiquitination. PD-L1 N-terminal domains Ig-V and Ig-C but not the PD-L1 C-terminal tail co-IP’d with Chk2 and restored Chk1 inhibitor (Chk1i) treatment resistance. Tumor PD-L1 expression correlated with Chk1i sensitivity in 44 primary human small cell lung cancer cell lines, implicating tumor-intrinsic PD-L1 as a DDRi response biomarker. In WT mice, genetic PD-L1 depletion but not surface PD-L1 blockade with αPD-L1, sensitized immunotherapy-resistant, BRCA1-WT 4T1 tumors to PARP inhibitor (PARPi). PARPi effects were reduced on PD-L1 KO tumors in RAG2KO mice indicating immune-dependent DDRi efficacy. Tumor PD-L1 depletion, likely due to impaired DDR, enhanced PARPi induced tumor-intrinsic STING activation (e.g., p-TBK1, CCL5) suggesting potential to augment immunotherapies.ConclusionsWe challenge the prevailing surface PD-L1 paradigm and establish a novel mechanism for cell-intrinsic PD-L1 control of the DDR and gene product expression. We identify therapeutic vulnerabilities from tumor PD-L1 depletion utilizing small molecule DDRi currently being tested in clinical trials. Data could explain αPD-L1/DDRi treatment resistance. Intracellular PD-L1 could be a pharmacologically targetable treatment target and/or response biomarker for selective DDRi alone plus other immunotherapies.ReferencesTopalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287, doi:10.1038/nrc.2016.36 (2016).Clark CA, et al. Tumor-intrinsic PD-L1 signals regulate cell growth, pathogenesis and autophagy in ovarian cancer and melanoma. Canres 0258.2016 (2016).Gupta HB et al. Tumor cell-intrinsic PD-L1 promotes tumor-initiating cell generation and functions in melanoma and ovarian cancer. 1, 16030 (2016).Zhu H, et al. BET bromodomain inhibition promotes anti-tumor immunity by suppressing PD-L1 expression. Cell Rep 16:2829–2837, doi:10.1016/j.celrep.2016.08.032 (2016)Wu B, et al. Adipose PD-L1 modulates PD-1/PD-L1 checkpoint blockade immunotherapy efficacy in breast cancer. Oncoimmunology 7:e1500107, doi:10.1080/2162402X.2018.1500107 (2018)Liang J, et al. Verteporfin inhibits PD-L1 through autophagy and the STAT1-IRF1-TRIM28 signaling axis, exerting antitumor efficacy. Cancer Immunol Res 8:952–965, doi:10.1158/2326-6066.CIR-19-0159 (2020)


2019 ◽  
Author(s):  
Hiroyuki Yamazaki ◽  
Kotaro Shirakawa ◽  
Tadahiko Matsumoto ◽  
Yasuhiro Kazuma ◽  
Hiroyuki Matsui ◽  
...  

AbstractApolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) DNA cytosine deaminase 3B (A3B) is a DNA editing enzyme which induces genomic DNA mutations in multiple myeloma and various other cancers. APOBEC family proteins are highly homologous so it is especially difficult to investigate the biology of A3B alone in cancer cells. To investigate A3B function in myeloma cells easily and comprehensively, we used CRISPR/Cas9 to generate A3B reporter cells that contain 3×FLAG tag and IRES-EGFP sequences integrated at the end of the A3B gene. These reporter cells stably express 3xFLAG tagged A3B and the reporter EGFP and this expression is enhanced under known stimuli, such as PMA. Conversely, shRNA knockdown of A3B decreased EGFP fluorescence and 3xFLAG tagged A3B protein levels. We screened a series of anticancer treatments using these cell lines and identified that most conventional therapies, such as antimetabolites or radiation, exacerbated endogenous A3B expression, but recent molecular targeting drugs, including bortezomib, lenalidomide and elotuzumab, did not. Furthermore, chemical inhibition of ATM, ATR and DNA-PK suppressed the EGFP expression upon treatment with antimetabolites. These results suggest that DNA damage response triggers A3B expression through ATM, ATR and DNA-PK signaling.


2020 ◽  
Vol 295 (50) ◽  
pp. 17169-17186
Author(s):  
Mysore S. Veena ◽  
Santanu Raychaudhuri ◽  
Saroj K. Basak ◽  
Natarajan Venkatesan ◽  
Parameet Kumar ◽  
...  

We have observed overexpression of PACS-1, a cytosolic sorting protein in primary cervical tumors. Absence of exonic mutations and overexpression at the RNA level suggested a transcriptional and/or posttranscriptional regulation. University of California Santa Cruz genome browser analysis of PACS-1 micro RNAs (miR), revealed two 8-base target sequences at the 3′ terminus for hsa-miR-34a and hsa-miR-449a. Quantitative RT-PCR and Northern blotting studies showed reduced or loss of expression of the two microRNAs in cervical cancer cell lines and primary tumors, indicating dysregulation of these two microRNAs in cervical cancer. Loss of PACS-1 with siRNA or exogenous expression of hsa-miR-34a or hsa-miR-449a in HeLa and SiHa cervical cancer cell lines resulted in DNA damage response, S-phase cell cycle arrest, and reduction in cell growth. Furthermore, the siRNA studies showed that loss of PACS-1 expression was accompanied by increased nuclear γH2AX expression, Lys382-p53 acetylation, and genomic instability. PACS-1 re-expression through LNA-hsa-anti-miR-34a or -449a or through PACS-1 cDNA transfection led to the reversal of DNA damage response and restoration of cell growth. Release of cells post 24-h serum starvation showed PACS-1 nuclear localization at G1-S phase of the cell cycle. Our results therefore indicate that the loss of hsa-miR-34a and hsa-miR-449a expression in cervical cancer leads to overexpression of PACS-1 and suppression of DNA damage response, resulting in the development of chemo-resistant tumors.


2013 ◽  
Vol 288 (23) ◽  
pp. 16212-16224 ◽  
Author(s):  
Elvira Crescenzi ◽  
Zelinda Raia ◽  
Francesco Pacifico ◽  
Stefano Mellone ◽  
Fortunato Moscato ◽  
...  

Premature or drug-induced senescence is a major cellular response to chemotherapy in solid tumors. The senescent phenotype develops slowly and is associated with chronic DNA damage response. We found that expression of wild-type p53-induced phosphatase 1 (Wip1) is markedly down-regulated during persistent DNA damage and after drug release during the acquisition of the senescent phenotype in carcinoma cells. We demonstrate that down-regulation of Wip1 is required for maintenance of permanent G2 arrest. In fact, we show that forced expression of Wip1 in premature senescent tumor cells induces inappropriate re-initiation of mitosis, uncontrolled polyploid progression, and cell death by mitotic failure. Most of the effects of Wip1 may be attributed to its ability to dephosphorylate p53 at Ser15 and to inhibit DNA damage response. However, we also uncover a regulatory pathway whereby suppression of p53 Ser15 phosphorylation is associated with enhanced phosphorylation at Ser46, increased p53 protein levels, and induction of Noxa expression. On the whole, our data indicate that down-regulation of Wip1 expression during premature senescence plays a pivotal role in regulating several p53-dependent aspects of the senescent phenotype.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 10509-10509
Author(s):  
R. D. Kennedy ◽  
P. Stuckert ◽  
E. Archila ◽  
M. De LaVega ◽  
C. Chen ◽  
...  

10509 Loss of the fanconi anemia (FA) pathway function has been described in a number of sporadic tumor types including breast, ovarian, pancreatic, head and neck and hematological malignancies. Functionally, the FA pathway responds to stalled DNA replication following DNA damage. Given the importance of the FA pathway in the response to DNA damage, we hypothesized that cells deficient in this pathway may become hyper-dependent on alternative DNA damage response pathways in order to respond to endogenous genotoxic stress such as occurs during metabolism. Therefore, targeting these alternative pathways could offer therapeutic strategies in FA pathway deficient tumors. To identify new therapeutic targets we treated FA pathway competent and deficient cells with a DNA damage response siRNA library, that individually knocked out 230 genes. We identified a number of gene targets that were specifically toxic to FA pathway deficient cells, amongst which was the DNA damage response kinase Ataxia Telangiectasia Mutated (ATM). To test the requirement for ATM in FA pathway deficient cells, we interbred Fancg ± Atm± mice. Consistent with the siRNA screen result, Fancg-/- Atm-/- mice were non viable and Fancg± Atm-/- and Fancg-/- Atm ± progeny were less frequent that would have been expected. Several human cell lines with FA gene mutations were observed to have constitutive activation of ATM which was markedly reduced on correction with the appropriate wild-type FA gene. Interestingly, FA pathway deficient cells, including the FANCC mutant and FANCG mutant pancreatic cancer cell lines, were selectively sensitive to monotherapy with the ATM inhibitor KU55933, as measured by dose inhibition and colony count assays. FA pathway deficient cells also demonstrated an increased level of chromosomal breakage, cell cycle arrest and apoptosis following KU55933 treatment when compared to FA pathway corrected cells. We conclude that FA pathway deficient cells have an increased requirement for ATM activation in order to respond to sporadic DNA damage. This offers the possibility that monotherapy with ATM inhibitors could be a therapeutic strategy for tumors that are deficient for the FA pathway. No significant financial relationships to disclose.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15640-e15640
Author(s):  
Ruby Yun-Ju Huang ◽  
Xun Hui Yeo ◽  
Wai Leong Tam

e15640 Background: AXL is a receptor tyrosine kinase that is often overexpressed in many cancers. It contributes to tumor progression, metastasis and drug resistance through activating downstream signaling cascades, making it an emerging therapeutic target. The first-in-class AXL inhibitor R428 (BGB321) was approved by the FDA for the treatment of relapsed or refractory acute myeloid leukemia. R428 (BGB321) was also reported to show selective sensitivity towards ovarian cancers (OC) with a Mesenchymal (Mes) molecular subtype. Recently, a novel role of AXL in the regulation of DNA damage responses has been described. In this study, we explored further the role of AXL in mediating DNA damage responses by using OC as a disease model. Methods: OC cell lines were treated with R428. Accumulation of γH2AX positive foci was assessed for DNA damage response. Western blotting for γH2AX, ATM and ATR levels were performed. Dose response curves of ATR inhibitors were generated by treating OC cells with the fixed dose of R428 (IC20 concentration of each cell line). Results: AXL inhibition by using R428 resulted in the increase of DNA damage foci in Mes OC cells SKOV3 and HeyA8. This occurred concurrently with the up-regulation of classic DNA damage response signaling molecules such as γH2AX, ATM and ATR. The IC50 of the ATR inhibitor significantly decreased for 2-3 folds in all OC cell lines tested. AXL inhibitor R428 sensitized both BRCA-mutated and non-BRCA-mutated OC cells to a potent and highly selective ATR inhibitor. Conclusions: Our results showed that AXL inhibition rendered cells more sensitive to the inhibition of ATR, a crucial mediator for replication stress, paving ways to the rationale for potential combinatory use of AXL and DNA damage repair inhibitors.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Akua A. Karikari ◽  
Wasco Wruck ◽  
James Adjaye

Abstract Background Malaria caused by Plasmodium falciparum results in severe complications including cerebral malaria (CM) especially in children. While the majority of falciparum malaria survivors make a full recovery, there are reports of some patients ending up with neurological sequelae or cognitive deficit. Methods An analysis of pooled transcriptome data of whole blood samples derived from two studies involving various P. falciparum infections, comprising mild malaria (MM), non-cerebral severe malaria (NCM) and CM was performed. Pathways and gene ontologies (GOs) elevated in the distinct P. falciparum infections were determined. Results In all, 2876 genes were expressed in common between the 3 forms of falciparum malaria, with CM having the least number of expressed genes. In contrast to other research findings, the analysis from this study showed MM share similar biological processes with cancer and neurodegenerative diseases, NCM is associated with drug resistance and glutathione metabolism and CM is correlated with endocannabinoid signalling and non-alcoholic fatty liver disease (NAFLD). GO revealed the terms biogenesis, DNA damage response and IL-10 production in MM, down-regulation of cytoskeletal organization and amyloid-beta clearance in NCM and aberrant signalling, neutrophil degranulation and gene repression in CM. Differential gene expression analysis between CM and NCM showed the up-regulation of neutrophil activation and response to herbicides, while regulation of axon diameter was down-regulated in CM. Conclusions Results from this study reveal that P. falciparum-mediated inflammatory and cellular stress mechanisms may impair brain function in MM, NCM and CM. However, the neurological deficits predominantly reported in CM cases could be attributed to the down-regulation of various genes involved in cellular function through transcriptional repression, axonal dysfunction, dysregulation of signalling pathways and neurodegeneration. It is anticipated that the data from this study, might form the basis for future hypothesis-driven malaria research.


Sign in / Sign up

Export Citation Format

Share Document