Molecular Mechanism of Nef-Mediated Inhibition of T Cell Migration in Response to SDF-1α.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 602-602
Author(s):  
In-Woo Park ◽  
Yumi Mitsuya ◽  
Jerome E. Groopman

Abstract Lymphocyte trafficking comprises an intricate multistep process, in which lymphocyte surface integrins, endothelial adhesion molecules, and chemokines produced in the local microenvironment play key roles. We previously reported that HIV-1 nef inhibits T cell chemotaxis in response to the physiological ligand SDF-1αwithout altering CXCR4 expression. Here, we explore the mechanism of this effect. HIV-1 nef significantly reduced the expression of LFA-1, inhibited the adhesion of nef-expressing Jurkat T cells to the HUVEC endothelium, and reduced their transendothelial migration. To gain further insight into how nef mediated these effects, substitution or deletion mutations were introduced into the nef gene, and transwell and transendothelial migration assays were performed. Deletion of the N-terminus proximal basic-rich domain did not change the nef-mediated inhibitory effects on T cell migration, whereas removal of the myristoylation site or the proline-rich amino acid sequence motif of Nef abolished these effects. Similarly, HIV-1 nef blocked the transendothelial migration of Jurkat T cells across the HUVEC monolayer. However, the observed inhibition of transendothelial migration conferred by the wild type nef expression was significantly but not completely reduced by introduction of mutations in the myristoylation site and proline-rich motif, indicating the involvement of other regions in the nef gene. Taken together, these results demonstrate that HIV-1 nef can impair the transendothelial migration of T cells in response to SDF-1αby disturbing different steps in the process, and that the myristoylation site and/or proline-rich motif are key to this effect. These data help to establish the molecular mechanisms of nef-mediated impairment of the T cell migratory response, an essential component of host defense, and provide the basis for targeted therapeutic interventions in patients with AIDS.

Blood ◽  
2002 ◽  
Vol 99 (9) ◽  
pp. 3111-3118 ◽  
Author(s):  
Michel Ticchioni ◽  
Céline Charvet ◽  
Nelly Noraz ◽  
Laurence Lamy ◽  
Marcos Steinberg ◽  
...  

Abstract Transendothelial migration of activated lymphocytes from the blood into the tissues is an essential step for immune functions. The housekeeping chemokine CXCL12 (or stroma cell–derived factor-1α), a highly efficient chemoattractant for T lymphocytes, drives lymphocytes to sites where they are highly likely to encounter antigens. This suggests that cross-talk between the T-cell receptor (TCR) and CXCR4 (the CXCL12 receptor) might occur within these sites. Here we show that the zeta-associated protein 70 (ZAP-70), a key element in TCR signaling, is required for CXCR4 signal transduction. The pharmacologic inhibition of ZAP-70, or the absence of ZAP-70 in Jurkat T cells and in primary CD4+ T cells obtained from a patient with ZAP deficiency, resulted in an impairment of transendothelial migration that was rescued by the transfection of ZAP-70. Moreover, the overexpression of mutated forms of ZAP-70, whose kinase domain was inactivated, also abrogated the migratory response of Jurkat T cells to CXCL12. In contrast, no involvement of ZAP-70 in T-cell arrest on inflammatory endothelium under flow conditions or in CXCL12-induced actin polymerization was observed. Furthermore, CXCL12 induced time-dependent phosphorylation of ZAP-70, Vav1, and extracellular signal-regulated kinases (ERKs); the latter were reduced in the absence of functional ZAP-70. However, though a dominant-negative Vav1 mutant (Vav1 L213A) blocked CXCL12-induced T-cell migration, pharmacologic inhibition of the ERK pathway did not affect migration, suggesting that ERK activation is dispensable for T-cell chemotaxis. We conclude that cross-talk between the ZAP-70 signaling pathway and the chemokine receptor CXCR4 is required for T-cell migration.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1269
Author(s):  
Jorge Arasa ◽  
Victor Collado-Diaz ◽  
Cornelia Halin

Afferent lymphatic vessels (LVs) mediate the transport of antigen and leukocytes to draining lymph nodes (dLNs), thereby serving as immunologic communication highways between peripheral tissues and LNs. The main cell types migrating via this route are antigen-presenting dendritic cells (DCs) and antigen-experienced T cells. While DC migration is important for maintenance of tolerance and for induction of protective immunity, T cell migration through afferent LVs contributes to immune surveillance. In recent years, great progress has been made in elucidating the mechanisms of lymphatic migration. Specifically, time-lapse imaging has revealed that, upon entry into capillaries, both DCs and T cells are not simply flushed away with the lymph flow, but actively crawl and patrol and even interact with each other in this compartment. Detachment and passive transport to the dLN only takes place once the cells have reached the downstream, contracting collecting vessel segments. In this review, we describe how the anatomy of the lymphatic network supports leukocyte trafficking and provide updated knowledge regarding the cellular and molecular mechanisms responsible for lymphatic migration of DCs and T cells. In addition, we discuss the relevance of DC and T cell migration through afferent LVs and its presumed implications on immunity.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3708-3708
Author(s):  
Chuntang Fu ◽  
Qingtian Li ◽  
Jia Zou ◽  
Changsheng Xing ◽  
Bingnan Yin ◽  
...  

Abstract Jmjd3, a histone H3K27 demethylase, is known to play a critical role in macrophage and T cell differentiation, but its role in T cell migration and T cell memory maintenance remains largely unknown. In this study, we show that Jmjd3 deficiency resulted in multiple alterations in T cell migration. Jmjd3 deletion limits CD4+ T cells egress out of the thymus, leading to thymic T-cell accumulation and peripheral lymphoid organ T-cell reduction. Gene profiling analysis of wild-type and Jmjd3-deficient CD4+ T cells identified altered expression of Jmjd3 target genes that correlated with changes in H3K27 and/or H3K4 trimethylation in promoters and gene body regions. The expression of the Jmjd3 target gene Pdlim4 is also regulated by Klf2, which regulates T-cell migration. Thus, our findings identify a novel Jmjd3 target gene, Pdlim4, in CD4+ T cell migration and provide insight into the molecular mechanisms by which Jmjd3 regulates T-cell migration. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Paulina Akeus ◽  
Louis Szeponik ◽  
Veronica Langenes ◽  
Viktoria Karlsson ◽  
Patrik Sundström ◽  
...  

2021 ◽  
pp. annrheumdis-2020-219335
Author(s):  
Emma Garcia-Melchor ◽  
Giacomo Cafaro ◽  
Lucy MacDonald ◽  
Lindsay A N Crowe ◽  
Shatakshi Sood ◽  
...  

ObjectivesIncreasing evidence suggests that inflammatory mechanisms play a key role in chronic tendon disease. After observing T cell signatures in human tendinopathy, we explored the interaction between T cells and tendon stromal cells or tenocytes to define their functional contribution to tissue remodelling and inflammation amplification and hence disease perpetuation.MethodsT cells were quantified and characterised in healthy and tendinopathic tissues by flow cytometry (FACS), imaging mass cytometry (IMC) and single cell RNA-seq. Tenocyte activation induced by conditioned media from primary damaged tendon or interleukin-1β was evaluated by qPCR. The role of tenocytes in regulating T cell migration was interrogated in a standard transwell membrane system. T cell activation (cell surface markers by FACS and cytokine release by ELISA) and changes in gene expression in tenocytes (qPCR) were assessed in cocultures of T cells and explanted tenocytes.ResultsSignificant quantitative differences were observed in healthy compared with tendinopathic tissues. IMC showed T cells in close proximity to tenocytes, suggesting tenocyte–T cell interactions. On activation, tenocytes upregulated inflammatory cytokines, chemokines and adhesion molecules implicated in T cell recruitment and activation. Conditioned media from activated tenocytes induced T cell migration and coculture of tenocytes with T cells resulted in reciprocal activation of T cells. In turn, these activated T cells upregulated production of inflammatory mediators in tenocytes, while increasing the pathogenic collagen 3/collagen 1 ratio.ConclusionsInteraction between T cells and tenocytes induces the expression of inflammatory cytokines/chemokines in tenocytes, alters collagen composition favouring collagen 3 and self-amplifies T cell activation via an auto-regulatory feedback loop. Selectively targeting this adaptive/stromal interface may provide novel translational strategies in the management of human tendon disorders.


Blood ◽  
2004 ◽  
Vol 104 (12) ◽  
pp. 3463-3471 ◽  
Author(s):  
Christoph Hess ◽  
Terry K. Means ◽  
Patrick Autissier ◽  
Tonia Woodberry ◽  
Marcus Altfeld ◽  
...  

CD8 T cells play a key role in host defense against intracellular pathogens. Efficient migration of these cells into sites of infection is therefore intimately linked to their effector function. The molecular mechanisms that control CD8 T-cell trafficking into sites of infection and inflammation are not well understood, but the chemokine/chemokine receptor system is thought to orchestrate this process. Here we systematically examined the chemokine receptor profile expressed on human CD8 T cells. Surprisingly, we found that CXC chemokine receptor 1 (CXCR1), the predominant neutrophil chemokine receptor, defined a novel interleukin-8/CXC ligand 8 (IL-8/CXCL8)–responsive CD8 T-cell subset that was enriched in perforin, granzyme B, and interferon-γ (IFNγ), and had high cytotoxic potential. CXCR1 expression was down-regulated by antigen stimulation both in vitro and in vivo, suggesting antigen-dependent shaping of the migratory characteristics of CD8 T cells. On virus-specific CD8 T cells from persons with a history of Epstein-Barr virus (EBV) and influenza infection, CXCR1 expression was restricted to terminally differentiated effector memory cells. In HIV-1 infection, CXCR1-expressing HIV-1–specific CD8 T cells were present only in persons who were able to control HIV-1 replication during structured treatment interruptions. Thus, CXCR1 identifies a subset of CD8 T cells poised for immediate cytotoxicity and early recruitment into sites of innate immune system activation.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3648
Author(s):  
Eva-Maria Kamionka ◽  
Baifeng Qian ◽  
Wolfgang Gross ◽  
Frank Bergmann ◽  
Thilo Hackert ◽  
...  

The dominant intrastromal T-cell infiltration in pancreatic cancer is mainly caused by the contact guidance through the excessive desmoplastic reaction and could represent one of the obstacles to an effective immune response in this tumor type. This study analyzed the collagen organization in normal and malignant pancreatic tissues as well as its influence on T-cell distribution in pancreatic cancer. Human pancreatic tissue was analyzed using immunofluorescence staining and multiphoton and SHG microscopy supported by multistep image processing. The influence of collagen alignment on activated T-cells was studied using 3D matrices and time-lapse microscopy. It was found that the stroma of malignant and normal pancreatic tissues was characterized by complex individual organization. T-cells were heterogeneously distributed in pancreatic cancer and there was no relationship between T-cell distribution and collagen organization. There was a difference in the angular orientation of collagen alignment in the peritumoral and tumor-cell-distant stroma regions in the pancreatic ductal adenocarcinoma tissue, but there was no correlation in the T-cell densities between these regions. The grade of collagen alignment did not influence the directionality of T-cell migration in the 3D collagen matrix. It can be concluded that differences in collagen organization do not change the spatial orientation of T-cell migration or influence stromal T-cell distribution in human pancreatic cancer. The results of the present study do not support the rationale of remodeling of stroma collagen organization for improvement of T-cell–tumor cell contact in pancreatic ductal adenocarcinoma.


Immunology ◽  
2003 ◽  
Vol 108 (1) ◽  
pp. 32-41 ◽  
Author(s):  
Isabel Correa ◽  
Tim Plunkett ◽  
Anda Vlad ◽  
Arron Mungul ◽  
Jessica Candelora-Kettel ◽  
...  

2019 ◽  
Vol 203 (12) ◽  
pp. 3237-3246
Author(s):  
Dalia E. Gaddis ◽  
Lindsey E. Padgett ◽  
Runpei Wu ◽  
Catherine C. Hedrick

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1791-1791
Author(s):  
W. Nicholas Haining ◽  
Holger Kanzler ◽  
Jeffrey Davies ◽  
Linda Drury ◽  
Jeffrey Kutok ◽  
...  

Abstract CpG ODN are being actively investigated as cancer vaccine adjuvants because they mature plasmacytoid dendritic cells (pDC) into potent antigen-presenting cells. In addition, TLR ligands induce a broad range of other immunologic effects in pDC including the secretion of interferon α (IFNa) and chemokines which alter lymphocyte migration. Whether these CpG-ODN driven TLR ligand signals enhance antigen specific Immunity and/or trafficking In humans Is presently unknown. We evaluated the efficacy of the CpG-ODN, 1018-ISS, as a vaccine adjuvant given with GM-CSF to induce T cell immunity in humans to the tumor antigen hTERT. Seventeen patients with advanced solid tumors were treated with 6 cycles of GM-CSF (x 3d), CpG-ODN (escalating from 3mg - 100mg × 1d) followed by a peptide vaccine (a CD8 epitope from hTERT), in a Phase I dose escalation study. Surprisingly, only one of seventeen patients showed a detectable hTERT-specific tetramer T cell response. However, the majority of patients developed marked peripheral blood (PB) lymphopenia after CpG-ODN. Time-course flow cytometry analysis of PB revealed that CD8, CD4, NK and B cell counts were all depressed immediately after CpG-ODN. The effect was transient, with normal counts returning after a week, suggesting that CpG-ODN induced alteration in cell migration rather than cell death. To find further evidence for altered migration we examined vaccine sites. Clinically, vaccine sites showed significant swelling/induration within hours of CpG-ODN administration, though none was dose-limiting. Immunohistochemistry of vaccine biopsies showed significant, perivascular accumulation of CD4 and CD8 T cells clustered around CD123+ pDC. Biopsies after CpG-ODN, but not after GM-CSF, showed a marked increase in expression of MxA, an interferon-inducible gene suggesting that the local activation of pDC with resultant IFNa secretion. qRT-PCR confirmed significant increases in a panel of IFNa-inducible genes in the PB after CpG-ODN, indicating a systemic effect of IFNa secretion. Lastly, we showed directly that CpG-ODN markedly increased the ability of purified pDC to induce T cell migration in an in vitro transwell assay, demonstrating that CpG-ODN stimulation of human pDC not only induces IFNa, but also other chemokines that are sufficient to chemoattract T cells. Our results show that CpG-ODN with GM-CSF may not be an effective adjuvant strategy for peptide tumor vaccines; but sequenced GM-CSF/CpG-ODN causes a chemokine response that effects T cell migration to the peripheral tissues. These findings suggest a role for CpG beyond that of a vaccine adjuvant as a mediator of lymphocyte migration, targeting immune responses to specific peripheral tissues. Therapeutic intratumoral GM-CSF/CpG-ODN injection could profoundly alter the local immunologic milieu, recruiting activated pDC and T cells to the tumor site, and tipping the balance towards an effective tumor-specific immune response.


Sign in / Sign up

Export Citation Format

Share Document