Assessing the Role of Continuous Activated Protein C (APC) Expression in Murine Thrombosis Models.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1030-1030
Author(s):  
Joerg Schuettrumpf ◽  
Alexander Schlachterman ◽  
Jianxiang Zou ◽  
Christian Furlan Freguia ◽  
Stefano Baila ◽  
...  

Abstract The protein C (PC) pathway plays a major role in the interface between coagulation and inflammation. APC has both anticoagulant and anti-inflammatory properties and is the only effective treatment in patients with severe sepsis. However, assessment of APC’s therapeutic effect on other complex disease models has been compromised by its short half-life (15 min) and by difficulties in monitoring protein levels. To overcome this limitation we used adeno-associated viral (AAV) vectors encoding the PC zymogen or APC for hepatocyte specific gene expression. For direct APC secretion we introduced an extra cleavage site adjacent to the activation peptide for the intracellular protease PACE/furin. Three dose cohorts of C57Bl/6 mice (n=4–6 per group) were injected for either AAV-APC or AAV-PC. A single vector injection resulted in continuous sustained long-term PC or APC expression without signs of liver toxicity. APC functional activity was restricted to AAV-APC-treated mice in which APC plateau levels of 88±43, 162±48, or 263±64 ng/ml were determined in a dose dependent manner. Further, AAV-APC expression consisted mainly of APC because no PC was detected by a zymogen specific ELISA. Only APC expressing mice presented enhanced anticoagulation as determined by 11 to 41 % prolongation of the aPTT values (p<0.05–0.005) and decreased thrombin/antithrombin III complex (TAT) levels (from 30 at baseline to 20, 14, or 12 ng/ml, p<0.05–0.0005). Next, we tested whether APC or PC would provide protection against vascular injury at both micro- and macrocirculation levels of living animals. No thrombus formation was detected in APC expressing mice (n=4) following FeCl3-injury of the carotid artery in contrast to uninjected or PC expressing controls (7 thrombi in 7 mice, p<0.01). Anticoagulant efficacy was then evaluated by real-time imaging of thrombus formation following laser induced arteriole injury using widefield intravital microscopy. In AAV-APC treated mice we observed dose dependent anticoagulation: 8 thrombi /12 injury sites in mice expressing ~80 ng/ml, 3/10 at ~160 ng, and 1/7 at ~260 ng/ml APC compared to 42/42 in untreated controls (P<0.001-0.0001). Expression of PC resulted in prevention of thrombus formation only at the highest expression levels of 4000 ng/ml (5/7, p<0.02) but not at 2000 ng/ml (10/10). When these animals were challenged by tail clipping, blood loss was increased only for mice with the highest APC levels by 2-fold (p<0.05). Moreover, at all levels of APC no changes in wound healing rates were observed following punch biopsy. Treatment of homozygous mice for the factor V Leiden (FVL) mutation with the same vector doses (n=3/group) resulted in a similar anticoagulant effect based on the aPTT with 18–27 % prolongation (p<0.05), or based on TAT-levels, dropping from 56.9 ng/ml at baseline to 28.1, 12.9, or 8.0 ng/ml( p<0.05–0.0005). This data shows that continuous expression of APC can overcome the inherited proteolytic resistance of FVL to APC. In summary, these results demonstrate that APC levels, within the range already obtained in humans by protein infusion (up to 400 ng/ml), provide antithrombotic activity dependent on the injury and/or vessel size. In our model, human APC levels of 160 ng/ml present effective anticoagulant effect without increasing the risk of bleeding. This strategy ensures easy assessment of the role of APC in complex disease models at closely defined circulating levels.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 718-718
Author(s):  
Geerte L. Van Sluis ◽  
Paris Margaritis ◽  
Michael Sliozberg ◽  
Jenna Mauer ◽  
Armida Faella ◽  
...  

Abstract Abstract 718 Recent evidence on the role of the protein C (PC) pathway in tumor progression of the experimental mouse melanoma model has revealed that inhibition of the cytoprotective effects of endogenous activated PC (aPC) enhances tumor cell extravasation, whereas exogenous administration of recombinant human APC has a protective effect. Moreover transgenic mice overexpressing endothelial PC receptor (EPCR) in tissue endothelium exhibit low rates of tumor metastasis. Here we report our findings in C57Bl/6 mice expressing murine forms of APC or zymogen PC by viral-mediated gene transfer. Vector-injected mice resulted in continuous expression of murine APC (mAPC) or PC (mPC), which reached plateau levels after week 2. On week 3, we administered B16F10 murine melanoma cells (3.5×10^5) intravascularly and analyzed the rates of lung metastasis 21 days later compared to age and gender matched saline-injected groups (control cohort=26 mice). We observed a dose-dependent protective effect of mAPC. Mice expressing mAPC at levels of 7.3 ± 1.5 ng/ml (n=8) or lower (determined by a functional ELISA-capture assay) did not differ from saline injected mice (that had baseline mAPC levels < 3 ng/ml). By increasing the vector dose, mAPC levels of 25.6 ± 4.8 ng/ml (n=16) to 118 ±6 ng/ml (n=10) reduced the numbers of lung metastasis compared to saline injected mice (p<0.05). To investigate the contribution of the cytoprotective/anticoagulant role of mAPC, we injected mice with a variant form of mAPC with reduced anticoagulant but intact cytoprotective activity (mAPC-5A). Following melanoma cell infusion, animals expressing levels of mAPC-5A ranging from 15.2 ± 3.2 ng/ml (n=16) to 80.4 ± 4.7 ng/ml (n=10) exhibited rates of lung metastasis similar to controls. To further explore the anticoagulant pathway in this metastasis model, we injected mice with AAV expressing zymogen mPC. There was a dose-dependent increase in the mPC levels measured by a chromogenic assay resulting in 3–4 fold of normal levels. However, this was not associated with increased levels of mAPC compared to saline-injected mice. Notably, in the mPC expressing mice (n=26), the rates of tumor metastasis were significantly reduced compared to controls (p<0.005). The protective effect of zymogen mPC remained even in the absence of protease-activated receptor (PAR-1), one main cellular receptor for the APC-mediated cytoprotective effect. In particular, the lung metastasis rates in PAR-1 null mice expressing mPC (n=21) were lower than PAR-1 null mice injected with saline (n=15) (p<0.01). Lastly, the hemostatic effects of the expressed transgenes (mPC, mAPC and mAPC-5A) in all mice were investigated. Prolongation of the activated partial prothrombin time and increase blood loss following tail clipping assay was restricted to animals expressing APC-WT in a dose-dependent manner but not in APC-5A or zymogen PC compared to controls. These findings support a novel and important role of zymogen PC in modulating tumor progression with minimal risk of bleeding. Disclosures: High: Genzyme, Inc: Consultancy, Patents & Royalties; Third Rock Ventures: Consultancy; PTC Therapeutics:; Amsterdam Molecular Therapeutics:; Sangamo Biosciences:; Novo-Nordisk: Consultancy; Shire, Inc.: Consultancy.


2004 ◽  
Vol 91 (01) ◽  
pp. 71-75 ◽  
Author(s):  
Mariko Okudaira ◽  
Yasuo Ontachi ◽  
Tomoe Mizutani ◽  
Mika Omote ◽  
Tomotaka Yoshida ◽  
...  

SummaryAlthough sepsis-induced release of nitric oxide (NO) is known to have an antithrombotic effect, it is unknown if NO exerts this same effect under physiological conditions. We have therefore attempted to determine whether or not NO protects against thrombus formation in normal Wistar rats injected with various amounts (0.8, 4.0, 20.0 and 100mg/kg/4hr) of L-NAME (N (omega)-nitro-l-arginine methyl ester), an NO synthase inhibitor, via the tail vein. Plasma levels of D-dimer fragments of fibrin were significantly increased in rats receiving L-NAME (0.21±0.04, 0.22±0.05, 0.26±0.07, 0.59±0.17µg/mL, means±SE; p<0.05, 0.05, 0.05, 0.01: L-NAME 0.8, 4, 20, 100, respectively, compared with control levels: <0.06 µg/mL), and thrombin-antithrombin complex (TAT) levels were significantly increased in rats receiving 20mg/kg/4hr or greater doses of L-NAME (4.5±1.1, 4.7±1.4, 18.7±4.9, 42.5±4.0ng/mL, NS, NS, p<0.05, 0.01, respectively, compared with control levels: 3.8±1.2 ng/mL). Glomerular fibrin deposition was increased in a dose-dependent manner in rats receiving L-NAME (6.8±1.5, 13.9±1.6, 32.4±2.6, 49.2±5.2%, p<0.05, 0.05, 0.01, 0.01, respectively, compared with control levels: 0.0±0.0%). Renal dysfunction and hepatic dysfunction were observed in rats receiving 20mg/kg/4hr or greater, or 100mg/kg/4hr, doses of L-NAME, respectively. Mean blood pressure was also elevated in rats receiving L-NAME in a dose-dependent manner. These findings suggest that NO, in addition to regulating blood pressure, is involved in prevention of thrombus formation under physiological circumstances.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 22-22
Author(s):  
Fionnuala Ni Ainle ◽  
Roger JS Preston ◽  
Vince P Jenkins ◽  
Jennifer A Johnson ◽  
Shona Harmon ◽  
...  

Abstract Protamine sulphate is a positively-charged polypeptide widely used to reverse heparin-induced anticoagulation. Paradoxically, protamine also possesses intrinsic anticoagulant properties. Furthermore, administration of excess protamine in the neutralization of UFH is associated with increased bleeding, particularly following cardiothoracic surgery. In this study we have investigated the molecular mechanisms underlying the anticoagulant properties of protamine. In pooled normal plasma, we observed a dose-dependent prolongation of both PT and APTT assays with increasing protamine concentrations (0–30μg/ml). The anticoagulant effects of protamine in normal plasma were also examined using a tissue factor-initiated thrombin generation assay. 30μg/ml protamine resulted in a two-fold prolongation of lag-time, a two-fold reduction in peak thrombin generation, and a 41±17% (p=0.047) decrease in endogenous thrombin potential (ETP). In heparinised plasma (0.3U/ml), addition of increasing protamine concentration initially reversed the anticoagulant effect of heparin, resulting in a progressive increase in ETP to that of normal plasma. However, further increases in protamine resulted in a dose-dependent reduction in ETP to a minimum of 61±16%. Recent studies have shown that platelet factor 4 (PF4), another cationic protein used to reverse heparin, can bind to the anionic Gla domain of protein C, thereby enhancing APC generation (up to 25-fold). Consequently, we investigated potential interaction(s) between protamine and the protein C anticoagulant pathway. As expected, in normal plasma, APC (0–20nM) caused a concentration-dependent prolongation in APTT to 180±8%, and a parallel reduction in ETP. However in the presence of 30μg/ml protamine, the effects of APC on both the APTT and ETP were markedly enhanced compared to the effect of either substance alone. As APC down-regulates thrombin generation by inactivating FVa and FVIIIa, we used a phospholipid-dependent FVa proteolysis assay to elucidate the mechanism responsible for the synergistic interaction between APC and protamine. The ability of APC to reduce FVa cofactor activity in this assay (in the presence or absence of protein S) was not significantly affected by the presence of protamine. However, a potent synergistic anticoagulant interaction between APC and protamine was also observed in plasma from patients with homozygous FV Leiden, suggesting protamine enhances APC cleavage of FVa at position Arg-306. To determine whether protamine influences the rate of FVIIIa proteolysis by APC, we expressed and purified an APC-resistant FVIII variant (R336Q/R562Q). FVIII-deficient plasma was spiked with physiological concentrations of wild type or variant FVIII, and the anticoagulant effects of protamine ± APC studied using plasma thrombin generation assays. Similar synergistic anticoagulant effects of APC in combination with protamine were observed for both wildtype and variant FVIII. To assess whether protamine also influences procoagulant processes, the rate of factor V activation by thrombin was analysed by SDS-PAGE. In the presence of protamine (30μg/ml), FVa generation was significantly reduced. In addition to inhibiting the rate of FVa generation, we also observed that protamine significantly impaired the functional activity of the prothrombinase complex in a concentration dependent manner. In contrast, cationic polybrene had no significant effect on either rate of FVa generation or prothrombinase complex activity. In conclusion, we have shown a novel and profound anticoagulant synergy between protamine sulphate and APC. Moreover, we demonstrate that this synergistic effect is mediated by independent effects on FVa generation and proteolysis respectively. These novel findings provide further insights into the molecular mechanism underlying the anticoagulant effect of excess protamine in human plasma.


1996 ◽  
Vol 76 (01) ◽  
pp. 111-117 ◽  
Author(s):  
Yasuto Sasaki ◽  
Junji Seki ◽  
John C Giddings ◽  
Junichiro Yamamoto

SummarySodium nitroprusside (SNP) and 3-morpholinosydnonimine (SIN-1), are known to liberate nitric oxide (NO). In this study the effects of SNP and SIN-1 on thrombus formation in rat cerebral arterioles and venules in vivo were assessed using a helium-neon (He-Ne) laser. SNP infused at doses from 10 Μg/kg/h significantly inhibited thrombus formation in a dose dependent manner. This inhibition of thrombus formation was suppressed by methylene blue. SIN-1 at a dose of 100 Μg/kg/h also demonstrated a significant antithrombotic effect. Moreover, treatment with SNP increased vessel diameter in a dose dependent manner and enhanced the mean red cell velocity measured with a fiber-optic laser-Doppler anemometer microscope (FLDAM). Blood flow, calculated from the mean red cell velocity and vessel diameters was increased significantly during infusion. In contrast, mean wall shear rates in the arterioles and venules were not changed by SNP infusion. The results indicated that SNP and SIN-1 possessed potent antithrombotic activities, whilst SNP increased cerebral blood flow without changing wall shear rate. The findings suggest that the NO released by SNP and SIN-1 may be beneficial for the treatment and protection of cerebral infarction


2019 ◽  
Vol 17 (4) ◽  
pp. 426-431
Author(s):  
Jin Xuezhu ◽  
Li Jitong ◽  
Nie Leigang ◽  
Xue Junlai

The main purpose of this study is to investigate the role of citrus leaf extract in carbon tetrachloride-induced hepatic injury and its potential molecular mechanism. Carbon tetrachloride was used to construct hepatic injury animal model. To this end, rats were randomly divided into 4 groups: control, carbon tetrachloride-treated, and two carbon tetrachloride + citrus leaf extract-treated groups. The results show that citrus leaf extract treatment significantly reversed the effects of carbon tetrachloride on the body weight changes and liver index. Besides, treatment with citrus leaf extract also reduced the levels of serum liver enzymes and oxidative stress in a dose-dependent manner. H&E staining and western blotting suggested that citrus leaf extract could repair liver histological damage by regulating AMPK and Nrf-2.


2021 ◽  
Vol 22 (9) ◽  
pp. 4717
Author(s):  
Jin-Young Lee ◽  
Da-Ae Kim ◽  
Eun-Young Kim ◽  
Eun-Ju Chang ◽  
So-Jeong Park ◽  
...  

Lumican, a ubiquitously expressed small leucine-rich proteoglycan, has been utilized in diverse biological functions. Recent experiments demonstrated that lumican stimulates preosteoblast viability and differentiation, leading to bone formation. To further understand the role of lumican in bone metabolism, we investigated its effects on osteoclast biology. Lumican inhibited both osteoclast differentiation and in vitro bone resorption in a dose-dependent manner. Consistent with this, lumican markedly decreased the expression of osteoclastogenesis markers. Moreover, the migration and fusion of preosteoclasts and the resorptive activity per osteoclast were significantly reduced in the presence of lumican, indicating that this protein affects most stages of osteoclastogenesis. Among RANKL-dependent pathways, lumican inhibited Akt but not MAP kinases such as JNK, p38, and ERK. Importantly, co-treatment with an Akt activator almost completely reversed the effect of lumican on osteoclast differentiation. Taken together, our findings revealed that lumican inhibits osteoclastogenesis by suppressing Akt activity. Thus, lumican plays an osteoprotective role by simultaneously increasing bone formation and decreasing bone resorption, suggesting that it represents a dual-action therapeutic target for osteoporosis.


1990 ◽  
Vol 123 (2) ◽  
pp. 218-224 ◽  
Author(s):  
Xiangbing Wang ◽  
Noriyuki Sato ◽  
Monte A. Greer ◽  
Susan E. Greer ◽  
Staci McAdams

Abstract. The mechanism by which 30% medium hyposmolarity induces PRL secretion by GH4C1 cells was compared with that induced by 100 nmol/l TRH or 30 mmol/l K+. Removing medium Ca2+, blocking Ca2+ channels with 50 μmol/l verapamil, or inhibiting calmodulin activation with 20 μmol/l trifluoperazine, 10 μmol/l chlorpromazine or 10 μmol/l pimozide almost completely blocked hyposmolarity-induced secretion. The smooth muscle relaxant, W-7, which is believed relatively specific in inhibiting the Ca2+-calmodulin interaction, depressed hyposmolarity-induced PRL secretion in a dose-dependent manner (r = −0.991, p<0.01 ). The above drugs also blocked or decreased high K+-induced secretion, but had much less effect on TRH-induced secretion. Secretion induced by TRH, hyposmolarity, or high K+ was optimal at pH 7.3-7.65 and was significantly depressed at pH 6.0 or 8.0, indicating that release of hormone induced by all 3 stimuli is due to an active cell process requiring a physiologic extracellular pH and is not produced by nonspecific cell toxicity. The data suggest hyposmolarity and high K+ may share some similarities in their mechanism of stimulating secretion, which is different from that of TRH.


Genome ◽  
2011 ◽  
Vol 54 (9) ◽  
pp. 752-762 ◽  
Author(s):  
Alireza Sameny ◽  
John Locke

Transposable elements are found in the genomes of all eukaryotes and play a critical role in altering gene expression and genome organization. In Drosophila melanogaster, transposable P elements are responsible for the phenomenon of hybrid dysgenesis. KP elements, a deletion-derivative of the complete P element, can suppress this mutagenic effect. KP elements can also silence the expression of certain other P-element-mediated transgenes in a process called P-element-dependent silencing (PDS), which is thought to involve the recruitment of heterochromatin proteins. To explore the mechanism of this silencing, we have mobilized KP elements to create a series of strains that contain single, well-defined KP insertions that show PDS. To understand the quantitative role of KP elements in PDS, these single inserts were combined in a series of crosses to obtain genotypes with zero, one, or two KP elements, from which we could examine the effect of KP gene dose. The extent of PDS in these genotypes was shown to be dose dependent in a logarithmic rather than linear fashion. A logarithmic dose dependency is consistent with the KP products interacting with heterochromatic proteins in a concentration-dependent manner such that two molecules are needed to induce gene silencing.


1993 ◽  
Vol 106 (1) ◽  
pp. 109-119 ◽  
Author(s):  
M.J. May ◽  
G. Entwistle ◽  
M.J. Humphries ◽  
A. Ager

Previous studies have shown that unactivated lymphocytes bind to CS1 peptide and that the adhesion of these cells to high endothelium is inhibited by CS1 peptide. These results suggest that lymphocyte binding occurs via recognition of the CS1-containing splice variant of fibronectin expressed on the high endothelial surface. We have now extended these studies by determining the role of the CS1 receptor, alpha 4 beta 1 (VLA-4) and the alternative VLA-4 ligand, VCAM-1 in a rat model of lymphocyte-high endothelial cell interaction. Anti-VLA-4 antibody, HP2/1, blocked lymphocyte adhesion to resting and IFN-gamma (interferon-gamma) pretreated cultured high endothelial cells (HEC) in a dose-dependent manner with maximal inhibition of 60%. HP2/1 completely blocked the adhesion of rat lymphocytes to immobilized CS1 peptide and to a recombinant soluble (rs) form of human VCAM-1. Lymphocyte binding to rsVCAM-1 was also completely blocked by CS1 peptide. Anti-rat VCAM-1 monoclonal antibody 5F10 inhibited adhesion to untreated and IFN-gamma-treated HEC equally and its effect at 50% inhibition was slightly less than that of HP2/1. These findings suggest that a CS1 peptide-inhibitable ligand expressed by high endothelium is VCAM-1. The majority of cultured HEC expressed significant levels of VCAM-1 under basal conditions, as did HEV in peripheral lymph nodes. VCAM-1 expression by HEC was upregulated by cytokine pretreatment and the effects were ordered: IFN-gamma &gt; TNF-alpha &gt; IL-1 beta. The results described here demonstrate that rat peripheral lymph node HEC express VCAM-1, its expression is upregulated by cytokines, in particular IFN-gamma, and it supports the adhesion of unactivated lymphocytes. They also suggest that the VLA-4/VCAM-1 adhesion pathway may operate during the constitutive migration of lymphocytes into lymphoid organs. Although the mechanism of CS1 peptide inhibition was not determined, these results show that VCAM-1 is a CS1 peptide-inhibitable ligand and therefore CS1, on its own, cannot be used as a specific indicator of fibronectin activity.


INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (11) ◽  
pp. 58-60
Author(s):  
N Solanki ◽  
◽  
S. K Bhavsar

Ficus racemosa is used in traditional system of medicine for various health problems and diseases, and is commonly known as Gular fig. The main objective was to study its effects against streptozotocin induced diabetic neuropathy by structural and functional marker. Investigation of diabetic neuropathy was carried out through functional and structural assessment in streptozotocin induced in diabetic rats. Diabetic rats were treated for 28 days in dose dependent manner of Ficus racemosa aqueous extract (250 mg/kg and 500 mg/kg) and ethanolic extract (200 mg/kg and 400 mg/kg). Study showed marked protection observed by Ficus racemosa in hippocampus region of brain and sciatic nerve tissues. Ficus racemosa treatment showed improvement in functional and structural markers, which strongly suggest its protective role in diabetic neuropathy.


Sign in / Sign up

Export Citation Format

Share Document