Multiple Myeloma as Target for γδ T Cell Mediated Immunotherapy - Expression of the Putative Vγ9Vδ2-TCR Ligand F1-ATPase on Myeloma Cells.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3391-3391
Author(s):  
Volker Kunzmann ◽  
Judith Engert ◽  
Brigitte Kimmel ◽  
Martin Wilhelm ◽  
Hermann Einsele

Abstract Activated Vγ9Vδ2 T cells, the major γδ T lymphocyte subset in humans, show cytolytic activity against various tumor cells. However, tumor antigens recognized by the TCR remained unkown so far. Recently, the ectopic surface expression of the F1-ATPase, normally expressed on the internal membrane of mitochondria, was implicated in tumor recognition of Vγ9Vδ2 T cells (Scotet E. et al., Immunity2005; 22:71–80). Surface expression of the a chain of the F1-ATPase (recognized by monoclonal antibody 7H10) strongly correlates with susceptibility of tumor cells against Vγ9Vδ2 T cell lysis. Different functions have been attributed to the ectopic expression of the F1-ATPase on the cell surface, including an immunoregulatory role induced by cell stress, receptor for angiostatin or regulation of lipoprotein transport through high-affinity apolipoprotein A-I binding. In this study we evaluated the surface expression of this F1-ATPase on hematopoetic tumor cell lines and on primary tumor cells from hematological malignancies. As already shown, the a subunit of F1-ATPase was clearly detected on several tumor cell lines which are consistently killed by activated Vγ9Vδ2 T cells (Daudi, K562, RPMI 8226), whereas the known Vγ9Vδ2 T cell resistant tumor cell lines (Raji, Jurkat) did not express detectable levels of the F1-ATPase. Analysis of 42 primary hematopoetic tumor cells (21 myeloma, 17 AML, 4 B-NHL) revealed frequent expression of F1-ATPase on primary myeloma cells (14/19 positive), whereas primary AML blasts (3/17 positive) and primary NHL cells (1/4 positive) expressed the putative Vγ9Vδ2-TCR ligand F1-ATPase less frequently. To further evaluate the functional role of F1-ATPase expression in Vγ9Vδ2 T cell mediated recognition of myeloma cells, cytotoxicity assays were performed. The mAb against the a subunit of F1-ATPase significantly decreased in vitro lysis of myeloma cells lines and primary myeloma cells by activated Vγ9Vδ2 T cells. These results suggests Vγ9Vδ2 TCR-dependent interactions between myeloma cells and Vγ9Vδ2 T cells and indicate that multiple myeloma should be considered as a major target for γδ T-cell mediated immunotherapy.

Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1563
Author(s):  
María Pulido ◽  
Virginia Chamorro ◽  
Irene Romero ◽  
Ignacio Algarra ◽  
Alba S-Montalvo ◽  
...  

The capacity of cytotoxic-T lymphocytes to recognize and destroy tumor cells depends on the surface expression by tumor cells of MHC class I molecules loaded with tumor antigen peptides. Loss of MHC-I expression is the most frequent mechanism by which tumor cells evade the immune response. The restoration of MHC-I expression in cancer cells is crucial to enhance their immune destruction, especially in response to cancer immunotherapy. Using mouse models, we recovered MHC-I expression in the MHC-I negative tumor cell lines and analyzed their oncological and immunological profile. Fhit gene transfection induces the restoration of MHC-I expression in highly oncogenic MHC-I-negative murine tumor cell lines and genes of the IFN-γ transduction signal pathway are involved. Fhit-transfected tumor cells proved highly immunogenic, being rejected by a T lymphocyte-mediated immune response. Strikingly, this immune rejection was more frequent in females than in males. The immune response generated protected hosts against the tumor growth of non-transfected cells and against other tumor cells in our murine tumor model. Finally, we also observed a direct correlation between FHIT expression and HLA-I surface expression in human breast tumors. Recovery of Fhit expression on MHC class I negative tumor cells may be a useful immunotherapeutic strategy and may even act as an individualized immunotherapeutic vaccine.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1843-1843 ◽  
Author(s):  
Jeesun Park ◽  
Shi Zhong ◽  
Michelle Krogsgaard ◽  
Amitabha Mazumder

Abstract Abstract 1843 Background: Multiple myeloma (MM) is a cancer of plasma cells and the second most common blood cancer. Current treatment strategies such as high dose chemotherapy, autologous stem cell rescue, and allogeneic transplantation have improved response rates and increased survival. However, these treatments often include high procedure-related morbidity and mortality and can only be applied to a small minority of myeloma patients. Therefore, safe broadly applicable immunologic strategies for myeloma, such as Adoptive Cell Therapy (ACT) are urgently needed. Methods: In this study we focused on aHLA-A*0201-restricted cancer testis antigen MAGE-A3:112–120, which is widely expressed in many forms of cancers such as metastatic melanoma, non-small cell lung cancer and MM, but not expressed in most normal tissues. To develop a system of effective strategies for T-cell therapy of multiple myeloma, we employed T-cell engineering technology using a MAGE-A3specific T-cell receptor (TCR)obtained from Dr. Steven Rosenberg at the National Cancer Institute. MAGE-A3 specific TCR was sub-cloned into a lentiviral vector and tranduced into purified CD8+ T-cells from human peripheral blood mononucleocytes (hPBMCs). To test the effector functionality of the MAGE-A3 specific TCR, the MAGE-A3 TCR-transduced CD8+ T-cells were subjected to cytokine release and chromium release assays after being co-cultured with MAGE-A3 peptide-loaded T2 cells, and U266 (MAGE-A3+/HLA-A*0201+), MM1.r (MAGE-A3+/HLA-A*0201-), KAS6 (MAGE-A3-/HLA-A*0201+), and KMS11(MAGE-A3-/HLA-A*0201-) MM tumor cell lines. Results: We observedcytokine production of INF-g and IL-2 in the MAGE-A3 TCR-transduced CD8+ T-cells generally in a dose-dependent manner to the MAGE-A3 peptide-loaded T2 cells. For example, the difference of INF-g secretion bythe MAGE-A3 TCR-transduced CD8+ T-cells wasa 10-fold increase from 0.001 uM to 0.02 uM of the loaded MAGE-A3 peptide. IL-2 secretion was also increasedby 7-fold from 0.001 uM to 0.1 uM of the MAGE-A3 peptide concentration. At 10uM of the peptide concentration, there was a 29-fold increase of the IL-2 production as compared to the 0.001 uM peptide concentration. Between 10uM and 100 uMof the peptide concentration, there was a decrease in IL-2 secretion by 2-fold, which is commonly observed at high peptide concentrations presumably due to cytotoxicity. Specific lysis of tumor cells by the MAGE-A3 TCR-transduced CD8+ T-cellswas observed in all four MM tumor cell lines, and we detected higher percentage of cell lysisin U266 (38%) and MM1.r (51%) cell lines as compared to the KAS6 (11%) and KMS11(21%) cell lines. Conclusions: Our findings suggest that the MAGE-A3 TCR-engineered CD 8+ T-cells are able to specifically recognize MAGE-A3 antigen, produce IL-2 and IFN-g, and destroy MM tumor cells loaded with the MAGE-A3 antigen. This potentially could further translate into effective MAGE-A3 specific targeted tumor rejection in vivo. We also plan to transduce the MAGE-A3 TCR into hematopoietic stem cells to and test the effector function of those cells against MM tumor cells and eventually against MM patient samples. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4120-4120 ◽  
Author(s):  
Kevin J. Curran ◽  
Beatrijs Seinstra ◽  
Yan Nikhamin ◽  
Raymond Yeh ◽  
Yelena Usachenko ◽  
...  

Abstract Abstract 4120 T cells can be genetically modified to target tumor antigens through the expression of a chimeric antigen receptor (CAR). Recent reports have demonstrated the effectiveness of CAR modified T cells in patients with relapsed or refractory malignancies. However, CAR modified T cells have yet to demonstrate the ability to recruit an endogenous anti-tumor response which would greatly enhance their therapeutic benefit. To overcome these limitations we have developed a bi-cistronic gamma-retroviral vector allowing for constitutive co-expression of a CD19-specific CAR (19–28z) and human CD40 ligand (CD40L; CD154). The CD40 ligand/CD40 system has been demonstrated to activate dendritic cells (DCs) and alter the phenotype of B cells (upregulation of co-stimulatory and adhesion molecules and secretion of pro-inflammatory cytokines) with subsequent stimulation of CD8+ T cell activation and proliferation. We now demonstrate T cells genetically modified to constitutively express CD40L undergo enhanced proliferation and up-regulated secretion of pro-inflammatory cytokines including GM-CSF and INF-g. Furthermore, T cells modified to constitutively express CD40L, upon co-culture, will alter the phenotype of CD40+ B cell tumor cell lines by enhancing the expression co-stimulatory molecules (CD80/CD86), adhesion molecules (CD54/CD58/CD70) and death receptors (CD95; Fas). These findings were similarly evident in primary patient tumor samples (e.g. CLL cells) when co-cultured with autologous T cells modified to constitutively express CD40L. We further demonstrate maturation of monocyte derived DCs with subsequent secretion of IL-12 following co-culture with autologous T cells modified to constitutively express CD40L. T cells transduced with the bi-cistronic 19–28z/CD40L vector showed enhanced in vitro cytotoxicity against a panel of CD19+ tumor cell lines. Furthermore, infusion of 19–28z/CD40L modified T cells enhances the survival of CD19+ tumor bearing immunodeficient mice (SCID/Beige) when compared to mice treated with T cells modified to express the anti-CD19 19–28z CAR alone. We conclude that further genetic modification of CAR targeted T cells to constitutively express the co-stimulatory CD40L may enhance the anti-tumor efficacy of this adoptive T cell therapy. Our data suggests this enhanced T cell efficacy may be due to both autocrine and paracrine mediated mechanisms. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 5-6
Author(s):  
Ryan Bjordahl ◽  
John Goulding ◽  
Mochtar Pribadi ◽  
Robert Blum ◽  
Chiawei Chang ◽  
...  

Surface expression of the HLA-I related molecules MICA and MICB (MICA/B) in response to oncogenic and cellular stress acts as a natural anti-cancer immunosurveillance mechanism. The recognition of MICA/B by the activating immunoreceptor NKG2D, which is expressed by natural killer (NK) and T cell subsets, is responsible for the removal of many transformed and virally infected cells. However, tumors frequently evade NKG2D-mediated immunosurveillance by proteolytic shedding of MICA/B, which can inhibit NKG2D function and promote tumor immune escape. Recently, we demonstrated that monoclonal antibodies targeting the conserved, membrane-proximal α3 domain of MICA/B can prevent MICA/B shedding and enhance NK cell anti-tumor efficacy. With the goal of leveraging the ubiquity of MICA/B expression on malignant cells, we have developed a novel chimeric antigen receptor targeting the α3 domain of MICA/B (CAR-MICA/B) and are currently evaluating application of CAR-MICA/B in an off-the-shelf NK cell immunotherapy platform for both solid and hematopoietic tumor indications. Optimization of CAR-MICA/B design was performed by primary T cell transduction using a matrix of CAR spacers and ScFv heavy and light chain orientations. Six candidate CAR-MICA/B designs were screened in vitro against a panel of tumor cell lines and in vivo against the Nalm6 leukemia cell line engineered to express MICA (Nalm6-MICA). All tested constructs demonstrated MICA-specific in vitro activation and cytotoxicity as well as in vivo tumor control (Figure 1A). Additional studies utilizing the optimal CAR-MICA/B configuration demonstrated MICA/B-specific reactivity against a panel of solid and hematopoietic tumor cell lines in vitro, including melanoma, renal cell carcinoma, and lung cancer lines (Figure 1B). Further, CAR-MICA/B T cells were superior to NKG2D-CAR T cells in clearing A2058 melanoma cells in an in vivo xenograft metastasis model (Figure 1C). Although MICA/B expression has primarily been studied in the context of solid tumors, moderate MICA/B mRNA expression was identified in a number of hematopoietic tumor cell lines, including acute myeloid leukemia (AML) and multiple myeloma (MM) lines. Following the confirmation of surface MICA/B protein expression on a selection of MM and AML cell lines, we utilized MICA/B CAR primary T cells to further demonstrate MICA/B-specific activation and cytotoxicity and to confirm CAR-MICA/B targeting of hematological malignancies (Figure 1D). To further advance CAR-MICA/B development, we introduced the CAR-MICA/B construct into an induced pluripotent stem cell (iPSC) line designed for production of off-the-shelf natural killer (NK) cell immunotherapies. Using a panel of tumor cell lines expressing MICA/B, CAR-MICA/B iPSC-derived NK (iNK) cells displayed specific MICA reactivity, resulting in enhanced cytokine production, degranulation, and CAR-mediated cytotoxicity compared to CAR-negative iNK control cells (Figure 1E). In addition to MICA/B-specific cytotoxicity mediated by CAR, iNK cells also mediated innate cytotoxicity against cancer cells through endogenous NKG2D and other NK cell activating receptors, highlighting the multifaceted targeting capacity of CAR iNK cells. In order to isolate CAR-directed cytotoxicity from the iNK cells' innate anti-tumor capacity, an in vivo proof of concept study was performed using mouse B16-F10 melanoma cells engineered to express human MICA. In this model, iNK expressing CAR-MICA/B significantly reduced B16-F10-MICA liver and lung metastases from CAR-MICA/B iNK cells compared to CAR negative control cells, with reductions of the number of metastases by 87% in the lung (p<0.0001) and 93% in the liver (p<0.006) for CAR-MICA/B iNK cells vs non-CAR controls (Figure 1F). Additionally, CAR-MICA/B iNK cells were effective at controlling Nalm6-MICA progression in a disseminated leukemia model, suggesting potential application against both hematopoietic and solid tumors. Ongoing work is focused on extending these studies into disease-specific models of endogenous MICA/B expression to further advance CAR-MICA/B iNK cells in both solid and hematologic cancers. In summary, these preclinical data support the development and translation of an off-the-shelf NK cell immunotherapy targeting the conserved α3 domain of MICA/B with potential therapeutic application to multiple hematopoietic and solid tumor types. Figure 1 Disclosures Bjordahl: Fate Therapeutics: Current Employment. Goulding:Fate Therapeutics: Current Employment. Blum:Fate Therapeutics: Current Employment. Chang:Fate Therapeutics: Current Employment. Wucherpfennig:Fate Therapeutics: Research Funding. Chu:Fate Therapeutics, Inc.: Current Employment, Current equity holder in publicly-traded company; Roche Holding AG: Current equity holder in publicly-traded company. Chu:Fate Therapeutics, Inc: Current Employment. Gaidarova:Fate Therapeutics, Inc: Current Employment. Liu:Fate Therapeutics: Current Employment. Sikaroodi:Fate Therapeutics: Current Employment. Fong:Fate Therapeutics: Current Employment. Huffman:Fate Therapeutics: Current Employment. Lee:Fate Therapeutics, Inc.: Current Employment. Valamehr:Fate Therapeutics, Inc: Current Employment, Current equity holder in publicly-traded company.


2021 ◽  
Author(s):  
Hongxia Wang ◽  
Liyan Wang ◽  
Yanning Li ◽  
Guangqi Li ◽  
Xiaochun Zhang ◽  
...  

Abstract BackgroundTaking advantages of nanobody (Nb) in immunotherapy, here we investigate the cytotoxicity of Nb based Chimeric antigen receptor T cells (Nb CAR-T) against Lymphoma cells.MethodsCD19 Nb CAR-T, CD20 Nb CAR-T, and Bispecific Nb CAR-T cells were generated by panning anti-human CD19, CD20 specific nanobodies sequences from naive phage display library, then integrating Nb genes with lentiviral cassette that included other CARs elements, and finally transducing T cells that were expanded under optimization system with above prepared CARs lentiviruses. Prepared Nb CAR-T cells were co-cultured with tumor cell lines or primary tumor cells for 24 hours or 5 days to evaluate the biological function. ResultsObtained several Nb sequences specific to CD19 and CD20. Optimized culture conditions of T cells that expand 87.5 folds after 7 days of activation. Generated Nb CAR-T cells that could recognize Burkitt lymphoma cell lines (Raji and Daudi), induce activation, proliferation, and therefore kill target cells specifically. Furthermore, same results were also obtained from patient samples with cytotoxicity about 60%. ConclusionsOur study demonstrated that nanobody based single and bispecific CAR-T cells have certain killing ability against both tumor cell lines and patient-derived tumor cells in vitro.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4032-4032
Author(s):  
Hannah S C Karlsson ◽  
Camilla Lindqvist ◽  
Gabriella Paul-Wetterberg ◽  
Helena Jernberg Wiklund ◽  
Kenneth Nilsson ◽  
...  

Abstract Abstract 4032 Introduction: T cells expressing tumor-targeting chimeric antigen receptors are showing promise in clinical trials for patients with B cell leukemia and lymphoma. However, increased levels of anti-apoptotic proteins, a common trait among B-cell tumors, may hamper treatment efficacy. ABT-737 is a small molecule inhibitor of anti-apoptotic proteins such as BCL-2, BCL-xL, BCL-w, and MCL-1, which induces apoptosis via the intrinsic apoptosis pathway in contrast to T-cells that utilize the extrinsic pathway controlled by death receptors and their ligands. ABT-737 has been shown to efficiently promote apoptosis in B-cell tumors as exemplified in models of pre-B-ALL. Recently, ABT-737 was shown to synergize with TRAIL to induce apoptosis. This prompted us to investigate if ABT-737 could be combined with T-cell therapy to enhance tumor cell death. Methods: PBMCs from healthy donors and patients with pre-B-ALL was genetically engineered with a second generation chimeric antigen receptor (CAR) targeting CD19 on B-cells. The T-cells and ABT-737 were tested both individually, and in combination, for their cytotoxic capacity in in vitro assays such as flow cytometry and the Caspase-Glo® 3/7 assay. The effects were studied in a panel of B-cell tumor cell lines (Daudi, U698, Karpas422, DG75, Nall-1) since they may exhibit different apoptosis resistance profiles. The expression of anti-apoptosis molecules in these cell lines was investigated by PCR. Results: PCR confirmed expression of BCL family proteins in the cell lines tested. CD19-targeting T-cells specifically induced apoptosis in CD19+ tumor cells. Similarly, but less efficiently, ABT-737 as single agent increased apoptosis in the various tumor cell lines. When combining T-cell and ABT-737 therapy, the tumor cell death was significantly increased to that of single agent treatment. The effect varied from additive to synergistic effects. The tumor cell lines did not change the level of antigen presenting molecules (MHC I and II), death receptors (Fas) or adhesion or costimulatory molecules (ICAM-I, CD80, CD86) upon ABT-737 treatment. Hence, the effect did not likely represent increased killing by enhanced physical interaction between T-cells and tumors but rather simultaneous engagement of both intrinsic and extrinsic apoptosis pathways. Conclusion: The apoptosis inducer ABT-737 is potently enhancing CD19-targeting T-cell therapy. By triggering both intrinsic and extrinsic apoptosis pathways also resistant tumors may succumb to treatment. Disclosures: Simonsson: Novartis, BMS, Merck, Pfizer: Consultancy, Honoraria.


Blood ◽  
1997 ◽  
Vol 89 (2) ◽  
pp. 610-620 ◽  
Author(s):  
Mona R. Hassuneh ◽  
Prakash S. Nagarkatti ◽  
Mitzi Nagarkatti

Abstract In the current study, we investigated the role of interleukin-2 (IL-2) and IL-4 as autocrine growth factors responsible for autonomous growth of four murine tumor cell lines: LSA, a radiation leukemia virus-induced T-cell lymphoma; EL-4, a chemically triggered T-cell lymphoma; PE-3T, a T-cell line that underwent spontaneous transformation ex vivo; and P815, a mastocytoma. All tumor cell lines screened constitutively expressed IL-2 receptor (IL-2R) and IL-4R genes. However, only LSA and PE-3T cells expressed IL-2 and IL-4 genes constitutively, whereas EL-4 and P815 tumor cells expressed only IL-4 but not IL-2. Monoclonal antibodies (MoAbs) against IL-2, IL-4, or a combination of these, as well as MoAbs against IL-2R significantly inhibited the proliferation of LSA but not that of other tumor cell lines ex vivo. To exclude the possibility that, in other tumor cell lines, the autocrine growth factor may interact with its receptor within the cell, the ability of antisense phosphorothioate oligonucleotides to inhibit the growth of the tumor cells was tested. The antisense phosphorothioate oligonucleotides specific for IL-2, IL-4, IL-2Rβ, or IL-2Rγ chains, added in culture, could markedly inhibit the growth of LSA but not that of the other tumor cell lines screened. Inasmuch as IL-2Rβ and IL-2Rγ subunits also serve as a component of the receptors for IL-4, IL-7, IL-9, and IL-15, the above data suggested that such cytokine redundancy was not responsible for autonomous growth of the other tumor cell lines. Addition of exogenous IL-2 or IL-4 to the tumor cell cultures caused significant enhancement in the proliferation of PE-3T cells, whereas other cell lines were either not significantly affected or slightly inhibited from growing. Interestingly, the LSA tumor growth in nude mice was significantly inhibited after treatment of these mice with a combination of MoAbs against IL-2 and IL-4. Together, our studies show for the first time that IL-2 and IL-4 may serve as autocrine growth factors in the autonomous proliferation of tumor cells, particularly those that are retrovirally induced. Second, some tumor cell lines, despite expressing certain cytokines and their receptors constitutively, may not depend exclusively on such factors for autocrine growth.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 851-851
Author(s):  
Aaron Foster ◽  
Peter Chang ◽  
Pei-Yi Lin ◽  
Jeannette Crisostomo ◽  
Aruna Mahendravada ◽  
...  

Abstract Introduction: Efficacy of chimeric antigen receptor (CAR)-modified T cells is dependent on their in vivo survival and expansion following infusion. The addition of accessory molecules (e.g., costimulatory and cytokine genes) may improve CAR-T proliferation and potency, but may also increase toxicity of these next generation CAR-T cell therapies, suggesting that the incorporation of a built in "safety switch" would balance safety and efficacy in a single, controllable therapy. Here, we demonstrate that cytosolic coexpression of a MyD88/CD40-derived fusion protein dramatically enhances CAR-T activation, cytokine production, and proliferation in vivo, resulting in improved antitumor efficacy. Importantly, CAR-T cell numbers, elevated cytokine levels, and observed CAR-T-related toxicity could be controlled by titratable rimiducid administration to reduce or eliminate CAR-T cells by activating the inducible caspase-9 (iC9) suicide gene. Methods: Human T cells were activated with anti-CD3/CD28 and transduced with retrovirus encoding, iC9, a first generation CAR (with CD3ζ) targeting CD19, Her2 or PSCA, and a detached, fusion protein comprising signaling domains from MyD88 and CD40 (MC). For comparison, additional CARs were constructed without MC, with MyD88 or CD40 elements only, or with conventional CARs coexpressing CD28 within the CAR molecule (CAR.28.ζ). Transduced T cells were assessed in vitro for cytotoxicity, cytokine production and proliferation against tumor cell lines (CD19+: Daudi, Raji; Her2+: SK-BR-3; PSCA+: Capan-1, HPAC). In vivo antitumor efficacy of CAR-modified T cells was assessed using immunodeficient NSG mice engrafted with antigen-matched tumor cell lines (5x105 Raji, i.v.; 1x106 SK-BR-3, s.c; 2x106 HPAC, s.c.) followed by i.t. or i.v. injection of variable doses of T cells. Reduction or elimination of CAR-T cells was performed by i.p. injection of rimiducid (0 - 5 mg/kg). Tumor cell lines expressing luciferase or T cells co-transduced with luciferase-encoding vectors were used for bioluminescence imaging (BLI) to measure tumor growth or T cell expansion/elimination, respectively. Serum cytokine levels were assessed by blood draws and CAR-T cell frequency was measured by flow cytometry. Results: All CAR constructs were stably expressed in T cells (30-90%). CAR vectors coexpressing MC induced high IL-2 levels in vitro when exposed to target antigen+ tumor cells (CD19 = 4246 ± 52, Her2 = 2613 ± 1298, and PSCA = 3263 ± 1393 pg/ml per 1x105 T cells over 48 hrs) and corresponded to improved CAR-T cell proliferation and tumor elimination compared to control vectors. In NSG mice, MC costimulation resulted in >2,000-fold expansion of CD19-targeted CAR-T cells and complete tumor control for >100 days in 100% of mice engrafted with CD19+ Raji cells (p = 0.0002) following injection of 5x106 CAR-T cells, followed on day 7 with a single i.p. dose of rimiducid (5 mg/kg) to control toxicity. MC-enabled CAR-T cells were eliminated or partially reduced by rimiducid titrations, which corresponded to decreased cytokine (IL-6, IFN-γ, TNF-α) levels and restoration of health in animals showing signs of toxicity (e.g., ≥15% weight loss). For solid tumors, Her2-targeted, MC-enabled CAR-T cells showed a 150-fold in vivo expansion and compared favorably to first (Her2.ζ; p = 0.01) and second generation (Her2.28.ζ; p = 0.01) CARs, causing 100% elimination of SK-BR-3 tumors and enhanced survival for >60 days following i.t. injection (p = 0.0015). PSCA-targeted CARs expressing MC also drove complete and durable (>42 days) elimination of large (200 mm3) HPAC tumors in 100% of mice, after a single i.v. injection of 1x107 CAR-T cells followed on day 14 with a single 5 mg/kg i.p. rimiducid dose to reverse toxicity. Summary: Coexpression of MC, and the cell therapy safety switch "CaspaCIDe", in combination with a first generation CAR, together comprising the novel "CIDeCAR" platform technology, dramatically increases efficacy against a number of tumor targets by enhancing T cell engraftment and proliferation following infusion, while incorporating an effective, built-in safety mechanism. In three distinct tumor models, rimiducid administration promptly eliminated signs and symptoms of CAR toxicity without subsequent loss of tumor control. CIDeCAR technology may allow the development of safer and more effective CAR-T cell therapies for a range of difficult-to-treat liquid and solid tumors. Disclosures Foster: Bellicum Pharmaceuticals: Employment. Chang:Bellicum Pharmaceuticals: Employment. Lin:Bellicum Pharmaceuticals: Employment. Crisostomo:Bellicum Pharmaceuticals: Employment. Mahendravada:Bellicum Pharmaceuticals: Employment. Lu:Bellicum Pharmaceuticals: Employment. Khalil:Bellicum Pharmaceuticals: Employment. Saha:Bellicum Pharmaceuticals: Employment. Shaw:Bellicum Pharmaceuticals: Employment. Morschl:Bellicum Pharmaceuticals: Employment. Slawin:Bellicum Pharmaceuticals: Employment, Equity Ownership. Spencer:Bellicum Pharmaceuticals: Employment, Equity Ownership.


1983 ◽  
Vol 50 (03) ◽  
pp. 726-730 ◽  
Author(s):  
Hamid Al-Mondhiry ◽  
Virginia McGarvey ◽  
Kim Leitzel

SummaryThis paper reports studies on the interaction between human platelets, the plasma coagulation system, and two human tumor cell lines grown in tissue culture: Melanoma and breast adenocarcinoma. The interaction was monitored through the use of 125I- labelled fibrinogen, which measures both thrombin activity generated by cell-plasma interaction and fibrin/fibrinogen binding to platelets and tumor cells. Each tumor cell line activates both the platelets and the coagulation system simultaneously resulting in the generation of thrombin or thrombin-like activity. The melanoma cells activate the coagulation system through “the extrinsic pathway” with a tissue factor-like effect on factor VII, but the breast tumor seems to activate factor X directly. Both tumor cell lines activate platelets to “make available” a platelet- derived procoagulant material necessary for the conversion of prothrombin to thrombin. The tumor-derived procoagulant activity and the platelet aggregating potential of cells do not seem to be inter-related, and they are not specific to malignant cells.


Sign in / Sign up

Export Citation Format

Share Document