Anti-Angiongenic Effects of mTOR-Inhibitors Is Regulated by AKT Activity in Multiple Myeloma Cells.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3406-3406
Author(s):  
Patrick Frost ◽  
Bao Hoang ◽  
Yijiang Shi ◽  
Huajun Yan ◽  
Alan Lichtenstein

Abstract Inhibitors of the mammalian target of rapamycin (mTOR), such as rapamycin (RAPA) and CCI-779 (CCI), have potential as anti-tumor agents against multiple myeloma (MM). Since other tumor models have demonstrated that heightened AKT activity induces hypersensitivity to mTOR inhibitors, we stably transfected U266 human MM cells with a constitutively activated AKT allele (U266-AKT) or empty vector control (U266-EV) in order to further explore the underlying mechanisms of this phenomena. Analysis of cell death demonstrated that U266-AKT were significantly more sensitive to RAPA in vitro, with an ED50 of 0.01 nM versus an ED50 of >100 nM for U266-EV control cells. A similar alteration of sensitivity to CCI was demonstrated in U266 isogenic tumors grown in NOD/SCID mice and treated with CCI in vivo. Analysis of the excised tumor nodules demonstrated a >5 fold inclease in apoptotic nuclei in U266-AKT tumors treated with CCI compared to isogenic control tumors, despite previous reports that mTOR inhibitors do not induce apoptosis in MM cells in vitro. One potential explanation for this is that AKT regulates the ability of CCI to inhibit angiogenesis, which is only relevent in vivo, and thereby indirectly induces apoptotic cell death. In support of this hypothesis, we demonstrated that CCI significantly decreased angiogenesis (measued by in situ staining of excised tumor nodules with CD34, a marker for endothelial cells) by 80% in U266-AKT, and only by 67% in isogenic controls. Since previous studies demonstrated that AKT/mTOR regulates the expression of vascular endothelial growth factor (VEGF) and hypoxia inducible factor 1a (HIF1a), we hypothesized that MM cells with heightened AKT activity may be more sensitive to the CCI-mediated inhibition of these critical angiogenic factors. In vitro, RAPA was markedly more effective at inhibiting HIF-1a and VEGF expression from U266-AKT compared to U266-EV control cells. One possible explanation for the regulatory role of AKT in the RAPA/CCI response is that MM cells with hyperactive AKT function depend upon mTOR-mediated (i.e. cap-dependent) translational pathway to express critical proteins like VEGF and HIF-1a, while “low-AKT” MM cells may be able to utilize non-mTOR dependent (i.e. cap-independent) salvage pathways to express these critical proteins and are thereby resistant to mTOR inhibitors.

2005 ◽  
Vol 25 (10) ◽  
pp. 1356-1365 ◽  
Author(s):  
Jui-Lee A Birse-Archbold ◽  
Lorraine E Kerr ◽  
Paul A Jones ◽  
James McCulloch ◽  
John Sharkey

Nix, a hypoxia-sensitive member of the Bcl-2 family, is upregulated at the mRNA level during hypoxia through induction of a hypoxia-inducible factor-1α (HIF-1α) response element in its promoter sequence. However, the mechanism(s) regulating Nix protein activation remain unclear. The present studies examine Nix protein expression and subcellular distribution in response to hypoxic stimuli in vivo and in culture and to two disparate apoptotic stimuli in vitro. Upregulation and translocation of Nix (by day 5) in hypoxic/serum-deprived CHO-K1 cells, was preceded by Bax activation (by day 4) and caspase-3 processing (by day 2), suggesting that initiation of cell death in vitro is a Nix-independent event. In contrast, an early Nix response (upregulation and translocation to the mitochondria) was observed after 6 h of middle cerebral artery occlusion in the rat. Nix translocation was observed in the ipsilateral cortex and striatum before other histological (infarct development, neuronal loss, apoptotic body formation) or biochemical (Bax activation or caspase-3 cleavage) markers of damage were detected. While fundamental differences between hypoxia/ischaemia in culture and in vivo likely explain the different temporal profiles of Nix, Bax, and caspase-3 activation observed, these studies show that like Bax, mitochondrial accumulation is a common event during Nix activation. These are the first studies to show upregulation and translocation of Nix in the ischaemic brain and suggest Nix to be a novel therapeutic target in ischaemic research. Moreover, Nix upregulation in staurosporine-treated SH-SY5Y cells and dexamethasone-treated A1.1 cells supports a more generalized role for Nix in apoptotic cell death.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sachiko Iwai ◽  
Hanako O. Ikeda ◽  
Hisashi Mera ◽  
Kohei Nishitani ◽  
Motoo Saito ◽  
...  

AbstractCurrently there is no effective treatment available for osteoarthritis (OA). We have recently developed Kyoto University Substances (KUSs), ATPase inhibitors specific for valosin-containing protein (VCP), as a novel class of medicine for cellular protection. KUSs suppressed intracellular ATP depletion, endoplasmic reticulum (ER) stress, and cell death. In this study, we investigated the effects of KUS121 on chondrocyte cell death. In cultured chondrocytes differentiated from ATDC5 cells, KUS121 suppressed the decline in ATP levels and apoptotic cell death under stress conditions induced by TNFα. KUS121 ameliorated TNFα-induced reduction of gene expression in chondrocytes, such as Sox9 and Col2α. KUS121 also suppressed ER stress and cell death in chondrocytes under tunicamycin load. Furthermore, intraperitoneal administration of KUS121 in vivo suppressed chondrocyte loss and proteoglycan reduction in knee joints of a monosodium iodoacetate-induced OA rat model. Moreover, intra-articular administration of KUS121 more prominently reduced the apoptosis of the affected chondrocytes. These results demonstrate that KUS121 protects chondrocytes from stress-induced cell death in vitro and in vivo, and indicate that KUS121 is a promising novel therapeutic agent to prevent the progression of OA.


Oncogene ◽  
2021 ◽  
Author(s):  
Yinyin Xu ◽  
Jing Guo ◽  
Jing Liu ◽  
Ying Xie ◽  
Xin Li ◽  
...  

AbstractMyeloma cells produce excessive levels of dickkopf-1 (DKK1), which mediates the inhibition of Wnt signaling in osteoblasts, leading to multiple myeloma (MM) bone disease. Nevertheless, the precise mechanisms underlying DKK1 overexpression in myeloma remain incompletely understood. Herein, we provide evidence that hypoxia promotes DKK1 expression in myeloma cells. Under hypoxic conditions, p38 kinase phosphorylated cAMP-responsive element-binding protein (CREB) and drove its nuclear import to activate DKK1 transcription. In addition, high levels of DKK1 were associated with the presence of focal bone lesions in patients with t(4;14) MM, overexpressing the histone methyltransferase MMSET, which was identified as a downstream target gene of hypoxia-inducible factor (HIF)-1α. Furthermore, we found that CREB could recruit MMSET, leading to the stabilization of HIF-1α protein and the increased dimethylation of histone H3 at lysine 36 on the DKK1 promoter. Knockdown of CREB in myeloma cells alleviated the suppression of osteoblastogenesis by myeloma-secreted DKK1 in vitro. Combined treatment with a CREB inhibitor and the hypoxia-activated prodrug TH-302 (evofosfamide) significantly reduced MM-induced bone destruction in vivo. Taken together, our findings reveal that hypoxia and a cytogenetic abnormality regulate DKK1 expression in myeloma cells, and provide an additional rationale for the development of therapeutic strategies that interrupt DKK1 to cure MM.


2019 ◽  
Vol 4 (2) ◽  
pp. 93-95 ◽  
Author(s):  
Jieru Wan ◽  
Honglei Ren ◽  
Jian Wang

Intracerebral haemorrhage (ICH) is a devastating type of stroke with high mortality and morbidity. However, we have few options for ICH therapy and limited knowledge about post-ICH neuronal death and related mechanisms. In the aftermath of ICH, iron overload within the perihaematomal region can induce lethal reactive oxygen species (ROS) production and lipid peroxidation, which contribute to secondary brain injury. Indeed, iron chelation therapy has shown efficacy in preclinical ICH studies. Recently, an iron-dependent form of non-apoptotic cell death known as ferroptosis was identified. It is characterised by an accumulation of iron-induced lipid ROS, which leads to intracellular oxidative stress. The ROS cause damage to nucleic acids, proteins and lipid membranes, and eventually cell death. Recently, we and others discovered that ferroptosis does occur after haemorrhagic stroke in vitro and in vivo and contributes to neuronal death. Inhibition of ferroptosis is beneficial in several in vivo and in vitro ICH conditions. This minireview summarises current research on iron toxicity, lipid peroxidation and ferroptosis in the pathomechanisms of ICH, the underlying molecular mechanisms of ferroptosis and the potential for combined therapeutic strategies. Understanding the role of ferroptosis after ICH will provide a vital foundation for cell death-based ICH treatment and prevention.


2002 ◽  
Vol 11 (5) ◽  
pp. 407-415 ◽  
Author(s):  
Tetsuji Kakegawa ◽  
Hirohiko Ise ◽  
Nobuhiro Sugihara ◽  
Toshio Nikaido ◽  
Naoki Negishi ◽  
...  

Cell death is thought to take place through at least two distinct processes: apoptosis and necrosis. There is increasing evidence that dysregulation of the apoptotic program is involved in liver diseases. However, there is no method to simply evaluate apoptosis in the liver tissue at present. It has been reported that the expression of asialoglycoprotein receptors (AGPRs) increases with apoptosis, but there is no report until now that investigates the influence of soluble AGPRs on apoptosis of hepatocytes. Soluble AGPRs have been reported to be present in human serum under physiological conditions. In the present study, in order to investigate the correlation between apoptosis of hepatocytes and soluble AGPR, mouse soluble AGPRs were detected using SDS-PAGE and Western blot analysis was conducted using anti-extracellular mouse hepatic lectin-1 (Ex-MHL-1) antiserum (polyclonal rabbit serum). The mouse soluble AGPRs were present in culture medium and mouse serum when hepatocytes were damaged. The soluble AGPRs increased proportionately, as the number of dead hepatocytes increased. In addition, soluble AGPRs existed more when apoptotic cell death was observed in in vitro and in vivo than when necrotic cell death was observed. The extracellular moiety of MHL-1 exists in the culture medium and mouse serum as a soluble AGPR, but the detailed mechanism of releasing soluble AGPR from hepatocytes has not been revealed yet. We described the first evidence for the relation between quantity of soluble AGPRs with two kinds of cell death: necrosis and apoptosis. Based on the results of our study, soluble AGPRs might become a new marker of apoptosis in the liver tissue and be useful for clinical diagnosis and treatment for liver diseases.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Tao Wang ◽  
Yanbin Gao ◽  
Rongchuan Yue ◽  
Xiaolei Wang ◽  
Yimin Shi ◽  
...  

Background. Podocyte injury plays an important role in diabetic nephropathy (DN). The aim of this study was to determine the potential therapeutic effects of the ginsenoside Rg1 on hyperlipidemia-stressed podocytes and elucidate the underlying mechanisms. Methods. In vitro and in vivo models of DN were established as previously described, and the expression levels of relevant markers were analyzed by Western blotting, real-time Polymerase Chain Reaction (PCR), immunofluorescence, and immunohistochemistry. Results. Ginsenoside Rg1 alleviated pyroptosis in podocytes cultured under hyperlipidemic conditions, as well as in the renal tissues of diabetic rats, and downregulated the mammalian target of rapamycin (mTOR)/NF-κB pathway. In addition, Rg1 also inhibited hyperlipidemia-induced NLRP3 inflammasome in the podocytes, which was abrogated by the mTOR activator L-leucine (LEU). The antipyroptotic effects of Rg1 manifested as improved renal function in the DN rats. Conclusion. Ginsenoside Rg1 protects podocytes from hyperlipidemia-induced damage by inhibiting pyroptosis through the mTOR/NF-κB/NLRP3 axis, indicating a potential therapeutic function in DN.


Blood ◽  
2009 ◽  
Vol 113 (23) ◽  
pp. 5927-5937 ◽  
Author(s):  
Encouse B. Golden ◽  
Philip Y. Lam ◽  
Adel Kardosh ◽  
Kevin J. Gaffney ◽  
Enrique Cadenas ◽  
...  

Abstract The anticancer potency of green tea and its individual components is being intensely investigated, and some cancer patients already self-medicate with this “miracle herb” in hopes of augmenting the anticancer outcome of their chemotherapy. Bortezomib (BZM) is a proteasome inhibitor in clinical use for multiple myeloma. Here, we investigated whether the combination of these compounds would yield increased antitumor efficacy in multiple myeloma and glioblastoma cell lines in vitro and in vivo. Unexpectedly, we discovered that various green tea constituents, in particular (-)-epigallocatechin gallate (EGCG) and other polyphenols with 1,2-benzenediol moieties, effectively prevented tumor cell death induced by BZM in vitro and in vivo. This pronounced antagonistic function of EGCG was evident only with boronic acid–based proteasome inhibitors (BZM, MG-262, PS-IX), but not with several non–boronic acid proteasome inhibitors (MG-132, PS-I, nelfinavir). EGCG directly reacted with BZM and blocked its proteasome inhibitory function; as a consequence, BZM could not trigger endoplasmic reticulum stress or caspase-7 activation, and did not induce tumor cell death. Taken together, our results indicate that green tea polyphenols may have the potential to negate the therapeutic efficacy of BZM and suggest that consumption of green tea products may be contraindicated during cancer therapy with BZM.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4795-4795
Author(s):  
Patrick J. Frost ◽  
YiJiang Shi ◽  
Carolyne Bardalaban ◽  
Bao Hoang ◽  
Alan Lichtenstein

Abstract In a previous study, we showed that heightened AKT activity sensitized multiple myeloma (MM) cells to the in vivo anti-tumor effects of CCI-779. To test the mechanism of AKT’s regulatory role, we studied isogenic U266 MM cell lines transfected with an activated AKT allele or empty vector. The AKT-transfected cells were markedly more sensitive to cytostasis induced in vitro by rapamycin or in vivo by CCI-779. In contrast, cells with quiescent AKT were completely resistant. The ability of rapamycin and CCI-779 to inhibit D-cyclin expression was also significantly greater in AKT-transfected MM cells and this was, in part, due to a greater ability to curtail cap-independent translation and internal ribosome entry site (IRES) activity of D-cyclin transcripts. As ERK/p38 activity can facilitate IRES-mediated translation of some transcripts, we investigated ERK/p38 as regulators of rapamycin sensitivity. AKT-transfected cells demonstrated significantly decreased ERK and p38 activity, suggesting their involvement. However, only an ERK inhibitor prevented D-cyclin IRES activity in resistant “low AKT” myeloma cells while a p38 inhibitor had no effect. Furthermore, the combination of rapamycin and the ERK inhibitor successfully sensitized myeloma cells to rapamycin in terms of down regulated D-cyclin protein expression and G1 arrest. These data support a scenario where ERK facilitates D-cyclin IRES function and heightened AKT activity down regulates this ERK-dependent phenomenon. Thus ERK and AKT activity are potential predictors of responsiveness to mTOR inhibitors.


2001 ◽  
Vol 75 (15) ◽  
pp. 7114-7121 ◽  
Author(s):  
Jennifer L. Nargi-Aizenman ◽  
Diane E. Griffin

ABSTRACT Virus infection of neurons leads to different outcomes ranging from latent and noncytolytic infection to cell death. Viruses kill neurons directly by inducing either apoptosis or necrosis or indirectly as a result of the host immune response. Sindbis virus (SV) is an alphavirus that induces apoptotic cell death both in vitro and in vivo. However, apoptotic changes are not always evident in neurons induced to die by alphavirus infection. Time lapse imaging revealed that SV-infected primary cortical neurons exhibited both apoptotic and necrotic morphological features and that uninfected neurons in the cultures also died. Antagonists of the N-methyl-d-aspartate (NMDA) subtype of glutamate receptors protected neurons from SV-induced death without affecting virus replication or SV-induced apoptotic cell death. These results provide evidence that SV infection activates neurotoxic pathways that result in aberrant NMDA receptor stimulation and damage to infected and uninfected neurons.


Sign in / Sign up

Export Citation Format

Share Document