Increased Regulatory T Cell Subsets (TReg and Tr1 Cells) in the Peripheral Blood of Patients with Multiple Myeloma Correlate with Disease Stage.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5070-5070
Author(s):  
Sylvia Feyler ◽  
Lee Marles ◽  
Stevie Richards ◽  
Gordon Cook

Abstract The immunologically hostile microenviroment of multiple Myeloma may contribute to the limited success of immunotherapy strategies. In addition to direct tumour-induced immunosuppression, tumour cells may generate suppressor cells to further suppress the immune effectors. Regulatory T-cells profoundly suppress immune responses and induce tolerance and 2 main subsets have been identified: Naturally Occurring TReg cells and Inducible regulatory Tr-1 cells. The association between tumour cells and regulatory T cells has not been studied in haematological malignancies, especially those of B lymphocyte lineages. Therefore, this the aim of this study is to determine if regulatory T-cell subsets are increased in the peripheral blood of patients with MM and how this varies with increasing disease burden. Peripheral blood from patients with MM (De novo, n=3; Low Disease burden, n=19; Relapsed/Refractory Disease, n=11) and MGUS (n=6) with a median age of 69 years old (range 39–89 yrs) were analysed by flow cytometry and compared to age-sex matched controls (n=20, median age 60 yrs, range 33–80 yrs). Whilst there was no significant difference in the absolute lymphocyte counts between MM patients and controls (1.58x109/l ±0.14 vs. 1.9x109/l ±0.1, p=0.05) a significant CD4+ T-cell lymphopenia was noted in patients with MM compared to controls (393±62 cells/μl vs. 849±95 cells/μl, p<0.001). The CD4+ T-cell lymphopenia was most marked in patients with relapsed/refractory disease (462±114 cells/μl) and low tumour burden (380±85 cells/μl) compared with newly diagnosed patients (875±64 cells/μl, p<0.001), MGUS (945±90 cells/μl, p<0.001) and controls (849±95 cells/μl, p<0.001). Using a sequential gating strategy, TReg cells were identified as CD4±/CD25+/GITR+ T-cells and expressed as a percentage of the CD4+T-cell population. Overall, patients with MM demonstrated a significant increase in the TReg cell population compared to the control group (15.0%±2.5 vs. 7.2%±1.1, p<0.001). The increased TReg cell population was most marked in patients with relapsed/refractory disease (13.6%±1.5) and low tumour burden (16%±1.9) compared with newly diagnosed patients (6.7%±1.0, p<0.001), MGUS (10.8%±1.7, p=0.03) and controls (7.2%±1.1, p<0.001). Tr1 cells were analysed using an in-house assay and identified on a sequential gating strategy as CD4+/IL-10+/IL-4− T-cells and expressed as a percentage of the CD4+T-cell population. Overall, patients with MM demonstrated an increase in the Tr1 cell population compared to the control group (14.5%±5.5 vs. 9.8%±1.0) though the trend did not reach statistical significance (p=0.23). Similarly, an alteration in the Th1/Th2 balance was seen with an increase in the Th2 cell population compared to the control group (6.3%±3 vs. 2.8%±0.1) though the trend did not reach statistical significance (p=0.15). These results provide further evidence of immune dysregulation in patients with MM and suggest that tumour-associated immunosuppression may be mediated through the actions of regulatory T-cell subsets. In particular, the association with advanced disease stage suggests a casual association between the malignant cells and induction of immune regulatory cells. Further work in establishing a casual association between MM tumour cells and regulatory T-cells is on-going and is essential if immunotherapeutic strategies are ever to reach their full potential.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4595-4595
Author(s):  
Zonghong Shao ◽  
Huaquan Wang ◽  
Limin Xing ◽  
Rong Fu ◽  
Fengmei Tu

Abstract Objective To investigate the quantitive and qualitive changes of peripheral blood CD4+CD25+ regulatory T cells and Th3 cells of the patients with myelodysplastic syndromes. Methods Whole peripheral blood samples of 40 MDS cases and 19 nromal control were assayed by flow cytometer for detecting the numbers of CD4+CD25+ regulatory T cell and CD3+CD4+TGFβ+ T cell(Th3). Expression of FOXP3 and TGF-β of peripheral blood mononuclear cell(PBMNC) were analysed by reverse transcriptase-polymerase chain reaction(RT-PCR). Commercial ELISA kits were used to measure plasma concentrations of TGF-β 1 according to the manufacturer’s instructions. Results. The percentage and number of CD4+CD25+ regulatory T cells in the CD4+T cell population were significantly higher in the peripheral blood of MDS patients than healthy controls[(21.5±2.2% vs 8.3±1.9%; P<0.05) and (76.1±20.6)×106/L vs (54.6±11.4)×106/L; P<0.05)]. The percentage and number of Th3 cells in the mononuclear cell population were significantly higher in the peripheral blood of MDS patients than healthy controls[(7.2±1.3%vs2.6±0.7%; P<0.01 and (63.5±15.2)×106/L vs (42.4±10.6)×106/L;P<0.05)]. The rate of expression of FOXP3 isolated from PBMNC was significantly higher in MDS patients than that in healthy controls (91.3% vs 52.6%; P<0.05%). But the expression of TGF-β of MDS patients didn’t significantly differ from that of healthy controls. The plasma level of TGF-β1 of MDS patients was significantly lower than that of healthy controls[(12.9±3.1)ng/ml vs (23.2±3.9)ng/ml; P<0.05)]. Conclusion The CD4+CD25 + regulatory T cells, Th3 cells and their inhibitive function increased in MDS, which might contribute to MDS clone escaping from immunosurveillance and gainning immunol privilege.


Author(s):  
Manman Dai ◽  
Li Zhao ◽  
Ziwei Li ◽  
Xiaobo Li ◽  
Bowen You ◽  
...  

It is well known that chicken CD8+ T cell response is vital to clearing viral infections. However, the differences between T cell subsets expressing CD8 receptors in chicken peripheral blood mononuclear cells (PBMCs) have not been compared. Herein, we used Smart-Seq2 scRNA-seq technology to characterize the difference of chicken CD8high+, CD8high αα+, CD8high αβ+, CD8medium+, and CD4+CD8low+ T cell subsets from PBMCs of avian leukosis virus subgroup J (ALV-J)-infected chickens. Weighted gene co-expression network analysis (WGCNA) and Trend analysis revealed that genes enriched in the “Cytokine–cytokine receptor interaction” pathway were most highly expressed in the CD8high αα+ T cell population, especially T cell activation or response-related genes including CD40LG, IL2RA, IL2RB, IL17A, IL1R1, TNFRSF25, and TNFRSF11, suggesting that CD8high αα+ T cells rather than other CD8 subpopulations were more responsive to ALV-J infections. On the other hand, genes involved in the “FoxO signaling pathway” and “TGF-beta signaling pathway” were most highly expressed in the CD4+CD8low+ (CD8low+) T cell population and the function of CD4+CD8low+ T cells may play roles in negatively regulating the functions of T cells based on the high expression of CCND1, ROCK1, FOXO1, FOXO3, TNFRSF18, and TNFRSF21. The selected gene expressions in CD8+ T cells and CD4+CD8low+ double-positive T cells confirmed by qRT-PCR matched the Smart-Seq2 data, indicating the reliability of the smart-seq results. The high expressions of Granzyme K, Granzyme A, and CCL5 indicated the positive response of CD8+ T cells. Conversely, CD4+CD8+ T cells may have the suppressor activity based on the low expression of activation molecules but high expression of T cell activity suppressor genes. These findings verified the heterogeneity and transcriptional differences of T cells expressing CD8 receptors in chicken PBMCs.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4670-4670
Author(s):  
Chang-Qing Xia ◽  
Anna Chernatynskaya ◽  
Clive Wasserfall ◽  
Benjamin Looney ◽  
Suigui Wan ◽  
...  

Abstract Abstract 4670 Anti-thymocyte globulin (ATG) has been used in clinic for the treatment of allograft rejection and autoimmune diseases. However, its mechanism of action is not fully understood. To our knowledge, how ATG therapy affects naïve and memory T cells has not been well investigated. In this study, we have employed nonobese diabetic mouse model to investigate how administration of anti-thymocyte globulin (ATG) affects memory and naïve T cells as well as CD4+CD25+Foxp3+ regulatory T cells in peripheral blood and lymphoid organs; We also investigate how ATG therapy affects antigen-experienced T cells. Kinetic studies of peripheral blood CD4+ and CD8+ T cells post-ATG therapy shows that both populations decline to their lowest levels at day 3, while CD4+ T cells return to normal levels more rapidly than CD8+ T cells. We find that ATG therapy fails to eliminate antigen-primed T cells, which is consistent with the results that ATG therapy preferentially depletes naïve T cells relative to memory T cells. CD4+ T cell responses post-ATG therapy skew to T helper type 2 (Th2) and IL-10-producing T regulatory type 1 (Tr1) cells. Intriguingly, Foxp3+ regulatory T cells (Tregs) are less sensitive to ATG depletion and remain at higher levels following in vivo recovery compared to controls. Of note, the frequency of Foxp3+ Tregs with memory-like immunophenotype is significantly increased in ATG-treated animals, which might play an important role in controlling effector T cells post ATG therapy. In summary, ATG therapy may modulate antigen-specific immune responses through modulation of naïve and memory T cell pools and more importantly through driving T cell subsets with regulatory activities. This study provides important data for guiding ATG therapy in allogenieic hematopoietic stem cell transplantation and other immune-mediated disorders. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5172-5172
Author(s):  
Rachel E. Protheroe ◽  
Colin G. Steward ◽  
Graziella Mazza ◽  
David C. Wraith

Abstract Graft versus host disease (GVHD) is the primary cause of transplant related morbidity and mortality, limiting the widespread application of haemopoietic stem cell transplantation (HSCT). Evidence from murine models supports the role of CD4+CD25+ regulatory T cells in the suppression of GVHD. Human evidence regarding the role of regulatory T cells in alloresponses is conflicting and may reflect the difficulty in defining and isolating the regulatory T cell population in humans. We have investigated the use of peripheral blood monocyte-derived dendritic cells (DCs) as stimulator cells in allogeneic mixed lymphocyte reactions (MLRs), as a means of assessing the in vitro suppressive function of regulatory T cells in human alloresponses. Peripheral blood mononuclear cells (PBMCs) were obtained from healthy adult volunteers. Magnetically isolated CD4+CD25+ T cells were combined with 50×103 autologous PBMCs or 20×103 autologous CD4+ T cells as responders, and 5×103 allogeneic irradiated DCs. Proliferation was assessed by tritiated thymidine incorporation. The CD4+CD25+ cells were anergic and demonstrated dose-dependent suppression of responder cell proliferation in the DC-driven allogeneic MLR. Greater than 50% suppression was seen with CD4+CD25+ T cells co-cultured with responder PBMCs at ratios of 1:4 to 1:32. Furthermore, depletion of CD4+CD25+ T cells from whole CD4+ responder cells resulted in enhanced proliferation and an increase in the amplitude of the MLR. Flow cytometry indicated that the majority of the magnetically isolated CD4+CD25+ T cells were FoxP3+ on intracellular staining and demonstrated down-regulation of cell surface expression of the IL-7 receptor (CD127). The potent suppression demonstrated here by CD4+CD25+CD127− T cells at ratios of 1:32 responder cells, suggests that these cells have a potential role for suppressing alloresponses at physiological levels. Moreover, this assay provides the basis for future investigation into regulatory T cell function in patients post-HSCT.


Blood ◽  
1996 ◽  
Vol 88 (9) ◽  
pp. 3513-3521 ◽  
Author(s):  
D Hamann ◽  
PA Baars ◽  
B Hooibrink ◽  
RW van Lier

Activation of unprimed CD4+CD45RA+/RO- T-cells results in a gradual loss of CD45RA expression concomitant with the acquisition of CD45RO. It has been suggested that this conversion occurs in vivo through a CD45RAbright/RObright stage. Next to this small CD45RAbright/RObright subset (Dbright), a larger subpopulation that expresses both RA and RO isoforms at low levels (Ddull) can be found in the circulating CD4+ T-cell population of all donors. The properties of the latter population are largely undefined. Here, we show that Ddull cells have an intermediate phenotype for antigens such as CD31, CD621, CD58, and CD95 that are differentially expressed on unprimed versus primed T cells. In addition, they are able to provide help for B-cell differentiation and contain substantial numbers of tetanus toxoid (TT)-specific precursor cells. Remarkably, both intracellular cytokine staining and analysis of T-cell clones showed that Ddull cells and CD45RO+ T-cells produce comparable high amounts of both interferon (IFN)-gamma and interleukin (IL)-4, which clearly distinguishes them from CD45RA+ and Dbright T-cells. Finally, prolonged culture of sorted Ddull cells in a mixture of IL-2, IL-6, and tumor necrosis factor (TNF)-alpha showed that about half of the population retained the Ddull phenotype. Part of the cells upregulated the CD45RA isoform, whereas only a minority switched to single CD45RO expression. Our findings indicate that the Ddull population contains primed T cells, some of which may reacquire an “unprimed” phenotype in the absence of antigenic stimulation.


Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1426
Author(s):  
Kerri Lal ◽  
Yuwadee Phuang-Ngern ◽  
Suchada Suhkumvittaya ◽  
Edwin Leeansyah ◽  
Aljawharah Alrubayyi ◽  
...  

CD161 expression on CD4+ T cells is associated with a Th17 functional phenotype, as well as with an innate capacity to respond to interleukin (IL)-12 and IL-18 without T cell receptor (TCR) stimulation. Chronic HIV-1 infection is associated with loss of the CD161+ CD4 T cell population, and non-human primate studies suggest that their depletion is associated with disease progression. However, the dynamics of the CD161+ CD4+ T cell population during acute HIV-1 infection remains unknown. In this study, we characterize peripheral blood CD161+ CD4+ T cells in detail, and examine how they are affected during the earliest stages of HIV-1 infection. Unbiased surface proteome screening and principal component analysis indicated that CD161+ CD4+ T cells are relatively phenotypically homogeneous between donors, and are intermediates between conventional CD4 T cells and innate-like T cells. In acute untreated HIV-1 infection, the circulating CD161+ CD4+ T cell population decreased in frequency, as did absolute cell counts starting from peak viral load, with elevated levels of activation and exhaustion markers expressed throughout acute HIV-1 infection. The capacity of these cells to respond to stimulation with IL-12 and IL-18 was also reduced. Early initiation of anti-retroviral treatment (ART) during acute HIV-1 infection restored the functionality of peripheral blood CD161+ CD4+ T cells, but not their frequency. In contrast, early ART initiation prevented the decline of colonic CD161+ CD4+ T cells that otherwise started during acute infection. Furthermore, loss of peripheral and colonic CD161+ CD4+ T cells in untreated infection was associated with levels of viral load. These results suggest that acute HIV-1 infection has profound effects on the CD161+ CD4+ T cell population that could not be completely prevented by the initiation of ART.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shruti Mishra ◽  
Saranya Srinivasan ◽  
Chaoyu Ma ◽  
Nu Zhang

Regulatory T cells (Treg) are essential to maintain immune homeostasis and prevent autoimmune disorders. While the function and molecular regulation of Foxp3+CD4+ Tregs are well established, much of CD8+ Treg biology remains to be revealed. Here, we will review the heterogenous subsets of CD8+ T cells have been named “CD8+ Treg” and mainly focus on CD122hiLy49+CD8+ Tregs present in naïve mice. CD122hiLy49+CD8+ Tregs, which depends on transcription factor Helios and homeostatic cytokine IL-15, have been established as a non-redundant regulator of germinal center (GC) reaction. Recently, we have demonstrated that TGF-β (Transforming growth factor-β) and transcription factor Eomes (Eomesodermin) are essential for the function and homeostasis of CD8+ Tregs. In addition, we will discuss several open questions regarding the differentiation, function and true identity of CD8+ Tregs as well as a brief comparison between two regulatory T cell subsets critical to control GC reaction, namely CD4+ TFR (follicular regulatory T cells) and CD8+ Tregs.


2018 ◽  
Vol 64 (5) ◽  
pp. 113 ◽  
Author(s):  
Lai-quan Huang ◽  
Jian-xin Wang ◽  
Kun He ◽  
Yi-zhi Jiang ◽  
Zhong-ling Wei ◽  
...  

2010 ◽  
Vol 127 (2) ◽  
pp. 150-156 ◽  
Author(s):  
Yu-Jung Heo ◽  
Young-Bin Joo ◽  
Hye-Jwa Oh ◽  
Mi-Kyung Park ◽  
Yang-Mi Heo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document