Recurrent De Novo Mutations of EPOR Gene in Primary Congenital Polycythemia.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1297-1297
Author(s):  
Mariluz P. Mojica-Henshaw ◽  
Caroline Laverdiere ◽  
Jaroslav F. Prchal ◽  
Josef T. Prchal

Abstract Primary familial and congenital polycythemia (PFCP) is a rare inherited disorder presenting with elevated red blood cell mass, elevated hemoglobin concentration and low levels of erythropoietin. Ten mutations in the erythropoietin receptor (EPOR) gene to date have been associated with PFCP. All of these mutations result in deletion of 59 to 82 amino acids from the carboxy terminal of EpoR which has been shown to contain a negative regulatory domain. Here, we describe a 2-year old boy of French-Canadian descent presenting with polycythemia and splenomegaly. Sequencing of the EPOR gene showed the proband to be heterozygous for a G to A transition in nucleotide 6002 (G6002A). The mutation generates a stop codon instead of tryptophan at amino acid 439, leading to a truncated EpoR. The association of the G6002A mutation in the EPOR gene with PFCP has been previously described in a large Finnish family (dela Chapelle et al., Proc Natl Acad Sci USA1993; 90: 4495) and in a 16-year old boy of English descent (Percy et al., Br J Hematol1998; 100:407). The G6002A mutation in both cases was considered to have arisen independently based on differences in a microsatellite polymorphism in the 5′UT of EPOR and the absence of the mutation in the immediate family of the English boy. We studied our proband’s parents for the G6002A EPOR mutation and did not find it. Their parentage was confirmed using 24 different microsatellite markers. This indicates that the G6002A mutation in the proband arose de novo. Since the mutation arose de novo, in vitro methycellulose cultures of erythroid progenitors isolated from peripheral blood of the proband were grown in the presence of increasing concentrations of Epo to rule out genetic mosaicism. The erythroid progenitors showed hypersensitivity to Epo as is characteristic of PFCP. However, we did not find evidence supportive of genetic mosaicism as all 70 BFU-E colonies analyzed were heterozygous for the G6002A mutation. Previously, two other polycythemia-associated EPOR mutations, 5974insG (Sokol et al., Blood1995; 86:15) and 5959G>T (Kralovics et al., Am J Hematol2001; 68:115) were shown to have arisen de novo. This case is thus the fourth instance out of 13 reported cases of polycythemia-associated EPOR mutations that has arisen de novo. Because of the rarity of polycythemia-associated EPOR mutations, their frequent de novo occurrence suggests that these mutations do not have a selective advantage but are detrimental. Their possible association with increased risk of thromboembolic and atherosclerotic disease due to chronically augmented Epo signaling is being explored by ongoing clinical studies.

2000 ◽  
Vol 74 (5) ◽  
pp. 2247-2254 ◽  
Author(s):  
Wenping Qiu ◽  
Scholthof G. Karen-Beth

ABSTRACT Satellite panicum mosaic virus (SPMV) depends on its helper virus, panicum mosaic virus (PMV), to provide trans-acting proteins for replication and movement. The 824-nucleotide (nt) genome of SPMV possesses an open reading frame encoding a 17.5-kDa capsid protein (CP), which is shown to be dispensable for SPMV replication. To localize cis-acting RNA elements required for replication and movement, a comprehensive set of SPMV cDNA deletion mutants was generated. The results showed that the 263-nt 3′ untranslated region (UTR) plus 73 nt upstream of the CP stop codon and the first 16 nt in the 5′ UTR are required for SPMV RNA amplification and/or systemic spread. A region from nt 17 to 67 within the 5′ UTR may have an accessory role in RNA accumulation, and a fragment bracketing nt 68 to 104 appears to be involved in the systemic movement of SPMV RNA in a host-dependent manner. Unexpectedly, defective RNAs (D-RNAs) accumulated de novo in millet plants coinfected with PMV and either of two SPMV mutants: SPMV-91, which is incapable of expressing the 17.5-kDa CP, and SPMV-GUG, which expresses low levels of the 17.5-kDa CP. The D-RNA derived from SPMV-91 was isolated from infected plants and used as a template to generate a cDNA clone. RNA transcripts derived from this 399-nt cDNA replicated and moved in millet plants coinoculated with PMV. The characterization of this D-RNA provided a biological confirmation that the critical RNA domains identified by the reverse genetic strategy are essential for SPMV replication and movement. The results additionally suggest that a potential “trigger” for spontaneous D-RNA accumulation may be associated with the absence or reduced accumulation of the 17.5-kDa SPMV CP. This represents the first report of a D-RNA associated with a satellite virus.


2021 ◽  
Author(s):  
◽  
Madeleine Huber

Operons wurden zuerst im Jahre 1961 beschrieben. Bis heute ist bekannt, dass die prokaryotischen Domänen Bacteria und Archaea Gene sowohl in monocistronischen als auch in bi- oder polycistronischen Transkripten exprimieren können. Häufig überlappen Gene sogar in ihren Sequenzen. Diese überlappenden Genpaare stehen nicht in Korrelation mit der Kompaktheit ihres Genoms. Das führt zu der Annahme, dass eine Art der Regulation vorliegt, welche weitere Proteine oder Gene nicht benötigt. Diese könnte eine gekoppelte Translation sein. Das bedeutet die Translation des stromabwärts-liegenden Gens ist abhängig von der Translation eines stromaufwärts-liegenden Gens. Diese Abhängigkeit kann zum Beispiel durch lang reichende Sekundärstrukturen entstehen, bei welchen Ribosomenbindestellen (RBS) des stromabwärts-liegenden Gens blockiert sind. Die de novo-Initiation am stromabwärts-liegenden Gen kann nur stattfinden, wenn das erste Gen translatiert wird und dabei die Sekundärstruktur an der RBS aufgeschmolzen wird. Für Genpaare in E. coli ist dieser Mechanismus gut untersucht. Ein anderes Beispiel für die Translationskopplung ist die Termination-Reinitiation, bei welcher ein Ribosom das erste Gen translatiert bis zum Stop-Codon, dort terminiert und direkt am stromabwärts-liegenden Start-Codon reinitiiert. Der Mechanismus via Termination-Reinitiation ist bis jetzt nur für eukaryontische Viren beschrieben worden. Im Gegensatz zu einer Kopplung über Sekundärstrukturen kommt es bei der Termination-Reinitiation am stromabwärts-liegenden Gen nicht zu einer de novo-Initiation sondern eine Reinitiation des Ribosoms findet statt. Diese Arbeit analysiert jene Art der Translationskopplung an Genen polycistronischer mRNAs in jeweils einem Modellorganismus als Vertreter der Archaea (Haloferax volcanii) und Bacteria (Escherichia coli). Hierfür wurden Reportergenvektoren erstellt, welche die überlappenden Genpaare an Reportergene fusionierten. Für diese Reportergene ist es möglich die Transkriptmenge zu quantifizieren sowie für die exprimierten Proteine Enzymassays durchgeführt werden können. Aus beiden Werten können Translationseffizienzen berechnet werden indem jeweils die Enzymaktivität pro Transkriptmenge ermittelt wird. Durch ein prämatures Stop-Codon in diesen Konstrukten ist es möglich zu unterscheiden ob es für die Translation des zweiten Gens essentiell ist, dass das Ribosom den Überlapp erreicht. Hiermit konnte für neun Genpaare in H. volcanii und vier Genpaare in E. coli gezeigt werden, dass eine Art der Kopplung stattfindet bei der es sich um eine Termination-Reinitiation handelt. Des Weiteren wurde analysiert, welche Auswirkungen intragene Shine-Dalgarno Sequenzen bei dem Event der Translationskopplung besitzen. Durch die Mutation solcher Motive und dem Vergleich der Translationseffizienzen der Konstrukte, mit und ohne einer SD Sequenz, wird für alle analysierten Genpaare beider Modellorganismen gezeigt, dass die SD Sequenz einen Einfluss auf diese Art der Kopplung hat. Zwischen den Genpaaren ist dieser Einfluss jedoch stark variabel. Weiterhin wurde der maximale Abstand zwischen zwei bicistronischen Genen untersucht, für welchen Translationskopplung via Termination-Reinitiation noch stattfinden kann. Hierfür wird durch site-directed mutagenesis jeweils ein prämatures Stop-Codon im stromaufwärts-liegenden Gen eingebracht, welches den intergenen Abstand zwischen den Genen in den jeweiligen Konstrukten vergrößert. Der Vergleich aller Konstrukte eines Genpaars zeigt in beiden Modellorganismen, dass die Termination-Reinitiation vom intergenen Abstand abhängig ist und die Translationseffizienz des stromabwärts-liegenden Reporters bereits ab 15 Nukleotiden Abstand abnimmt. Eine weitere Fragestellung dieser Arbeit war es, den genauen Mechanismus der Termination-Reinitiation zu analysieren. Für Ribosomen gibt es an der mRNA nach der Termination der Translation zwei Möglichkeiten: Entweder als 70S Ribosom bestehen zu bleiben und ein weiteres Start-Codon auf der mRNA zu suchen oder in seine beiden Untereinheiten zu dissoziieren, während die 50S Untereinheit die mRNA verlässt und die 30S Untereinheit über Wechselwirkungen an der mRNA verbleiben kann. Um diesen Mechanismus auf molekularer Ebene zu untersuchen, wird ein Versuchsablauf vorgestellt. Dieser ermöglicht das Event bei der Termination-Reinitiation in vitro zu analysieren. Eine Unterscheidung von 30S oder 70S Ribosomen bei der Reinitiation der Translation des stromabwärts-liegenden Gens wird ermöglicht. Die Idee dabei basiert auf einem ribosome display, bei welchem Translationskomplexe am Ende der Translation nicht in ihre Bestandteile zerfallen können, da die eingesetzte mRNA kein Stop-Codon enthält Der genaue Versuchsablauf, die benötigten Bestandteile sowie proof-of-principal Versuche sind in der Arbeit dargestellt und mögliche Optimierungen werden diskutiert.


2006 ◽  
Vol 26 (21) ◽  
pp. 7953-7965 ◽  
Author(s):  
Harumi Y. Mukai ◽  
Hozumi Motohashi ◽  
Osamu Ohneda ◽  
Norio Suzuki ◽  
Masumi Nagano ◽  
...  

ABSTRACT The nuclear proto-oncogene c-myb plays crucial roles in the growth, survival, and differentiation of hematopoietic cells. We established three lines of erythropoietin receptor-transgenic mice and found that one of them exhibited anemia, thrombocythemia, and splenomegaly. These abnormalities were independent of the function of the transgenic erythropoietin receptor and were observed exclusively in mice harboring the transgene homozygously, suggesting transgenic disruption of a certain gene. The transgene was inserted 77 kb upstream of the c-myb gene, and c-Myb expression was markedly decreased in megakaryocyte/erythrocyte lineage-restricted progenitors (MEPs) of the homozygous mutant mice. In the bone marrows and spleens of the mutant mice, numbers of megakaryocytes were increased and numbers of erythroid progenitors were decreased. These abnormalities were reproducible in vitro in a coculture assay of MEPs with OP9 cells but eliminated by the retroviral expression of c-Myb in MEPs. The erythroid/megakaryocytic abnormalities were reconstituted in mice in vivo by transplantation of mutant mouse bone marrow cells. These results demonstrate that the transgene insertion into the c-myb gene far upstream regulatory region affects the gene expression at the stage of MEPs, leading to an imbalance between erythroid and megakaryocytic cells, and suggest that c-Myb is an essential regulator of the erythroid-megakaryocytic lineage bifurcation.


Blood ◽  
2005 ◽  
Vol 105 (9) ◽  
pp. 3743-3745 ◽  
Author(s):  
Jérôme Larghero ◽  
Nathalie Gervais ◽  
Bruno Cassinat ◽  
Jean-Didier Rain ◽  
Marie-Hélène Schlageter ◽  
...  

AbstractPolycythemia vera (PV) is an acquired myeloproliferative disorder with primary expansion of the red cell mass leading to an increased risk of thrombosis and less frequently to myelofibrosis and secondary acute leukemia. Standard therapies include cytoreduction with either phlebotomy or chemotherapeutic agents and antithrombotic drugs. Because long-term exposure to cytotoxic chemotherapy may increase the risk of acute transformation, new therapeutic options are needed. Tipifarnib is a nonpeptidomimetic inhibitor of farnesyl transferase that was developed as a potential inhibitor of RAS signaling. In the present study we report that tipifarnib used at pharmacologically achievable concentrations strongly inhibits the erythroid burst-forming unit (BFU-E) autonomous growth that characterizes patients with PV. Moreover, at low tipifarnib concentrations (0.15 μM), the inhibitory effect was preferentially observed in PV BFU-E progenitors and not in normal BFU-E progenitors and was not rescued by erythropoietin (EPO). Thus tipifarnib may specifically target PV stem cells and may be of clinical interest in the treatment of patients with PV.


2008 ◽  
Vol 93 (5) ◽  
pp. 1865-1873 ◽  
Author(s):  
Daniel Kelberman ◽  
Sandra C. P. de Castro ◽  
Shuwen Huang ◽  
John A. Crolla ◽  
Rodger Palmer ◽  
...  

Abstract Context: Heterozygous, de novo mutations in the transcription factor SOX2 are associated with bilateral anophthalmia or severe microphthalmia and hypopituitarism. Variable additional abnormalities include defects of the corpus callosum and hippocampus. Objective: We have ascertained a further three patients with severe eye defects and pituitary abnormalities who were screened for mutations in SOX2. To provide further evidence of a direct role for SOX2 in hypothalamo-pituitary development, we have studied the expression of the gene in human embryonic tissues. Results: All three patients harbored heterozygous SOX2 mutations: a deletion encompassing the entire gene, an intragenic deletion (c.70_89del), and a novel nonsense mutation (p.Q61X) within the DNA binding domain that results in impaired transactivation. We also show that human SOX2 can inhibit β-catenin-driven reporter gene expression in vitro, whereas mutant SOX2 proteins are unable to repress efficiently this activity. Furthermore, we show that SOX2 is expressed throughout the human brain, including the developing hypothalamus, as well as Rathke’s pouch, the developing anterior pituitary, and the eye. Conclusions: Patients with SOX2 mutations often manifest the unusual phenotype of hypogonadotropic hypogonadism, with sparing of other pituitary hormones despite anterior pituitary hypoplasia. SOX2 expression patterns in human embryonic development support a direct involvement of the protein during development of tissues affected in these individuals. Given the critical role of Wnt-signaling in the development of most of these tissues, our data suggest that a failure to repress the Wnt-β-catenin pathway could be one of the underlying pathogenic mechanisms associated with loss-of-function mutations in SOX2.


2015 ◽  
Vol 25 (3) ◽  
pp. 426-434 ◽  
Author(s):  
Brock A. Peters ◽  
Bahram G. Kermani ◽  
Oleg Alferov ◽  
Misha R. Agarwal ◽  
Mark A. McElwain ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 631-631 ◽  
Author(s):  
Florence Pasquier ◽  
Caroline Marty ◽  
Frédérique Verdier ◽  
Sarah Grosjean ◽  
Claude Préhu ◽  
...  

Abstract Primary Familial and Congenital Polycythemia (PFCP) is a non-malignant pathology of the erythroid lineage, characterized by an isolated increase of the red cell mass without evolution into myelofibrosis or acutisation. Around twenty constitutive non-sense and missense mutations located in the exon 8 of the erythropoietin receptor (EPOR) gene have been described so far. They all lead to the truncation of the C-terminal part of the protein and the loss of several cytoplasmic tyrosines. The erythropoietin (EPO) hypersensitivity of the PFCP erythroid progenitors is usually explained by the disappearance of these negative signaling regulation and internalization domains (Figure 1a). Nonetheless, relatively few functional studies have been carried out. We therefore investigated the mechanism of EPOR mutations in PFCP. We identified and extensively studied a new constitutive heterozygous frameshift EPOR mutation, p.Gln434Profs*11, which generates a new 11 amino acid (AA) C-terminal tail and a STOP codon at position 444, leading to the truncation of 63 AA of the wild-type receptor (Figure 1c). The primary progenitor cells displayed a major hypersensitivity to EPO, similar to Polycythemia Vera (PV) patients, as well as a spontaneous and persistent JAK2 and STAT5 phosphorylation, compared to the control cells. To study the mechanism of this new EPOR mutant, Ba/F3 cells were transduced with different retroviruses encoding either the HA-tagged wild-type EPOR (EPOR WT)or a truncated receptor at position 444, p.Gln444* (EPOR STOP) or the frameshift EPOR p.Gln434Profs*11mutation (EPOR FS), identical to the patient's mutation (Figure 2). As observed in primary cells, EPOR FS conferred a spontaneous STAT5 phosphorylation and a 4- to 5-fold EPO hypersensitivity to Ba/F3 cells (IC50 of 0.003 U/mL vs 0.01 U/mL) compared to both EPOR WT and EPOR STOP. As expected, the loss of negative regulatory domains in the C-terminal part of the receptor induced a persistent STAT5 activation in EPOR FS and EPOR STOP Ba/F3 cells. Moreover, EPOR FS was more stable (half-life of 120 minutes vs 60 minutes) and displayed a higher level of localization at the cell surface (more than 2-fold), compared to EPOR WT and EPOR STOP. However, no modification of the EPOR FS internalization pattern was observed during 125I-EPO labeling experiments and cytometry analysis. Furthermore, a dileucine motif, known to be a potential clathrin-dependent endocytosis site, is lost in the new C-terminal tail of EPOR FS mutant, yet its abrogation in EPOR WT and EPOR STOP did not modify the phenotype of Ba/F3 cells. Therefore, unlike previous reports, the major EPO hypersensitivity induced by EPOR p.Gln434Profs*11 cannot be explained by the receptor truncation, but rather by the appearance of a new C-terminal tail that confers spontaneous signaling. We wondered if this model could be extended to other EPOR mutations already described in PFCP (Figures 1a-b and 2). We therefore measured the impact on Ba/F3 cells proliferation of the frameshift EPOR p.Pro438Metfs*6 and its non-sense mutant counterpart, p.Pro443*, which retains the tyrosine at position 426, a binding site for the negative signaling regulators SOCS3 and CIS. EPO-hypersensitivity (4- to 5-fold) was only induced by EPOR p.Pro438Metfs*6, suggesting a common mechanism for the frameshift EPOR mutations. Interestingly, two proximal non-sense mutations, EPOR p.Glu399* and p.Glu425*, lacking 7 of the 8 cytoplasmic tyrosines that compose EPOR negative regulatory and internalization domains, were also able to confer a high EPO hypersensitivity to Ba/F3 cells. To our knowledge this is the first extensive functional study of EPOR mutations in PFCP. We highlighted that this pathology is much more complex than expected, since different mechanisms are involved in the EPO hypersensitivity phenotype, according to the type of EPOR mutation. Indeed, extensive truncations are sufficient by themselves to confer the EPO hypersensitivity phenotype due to the loss of all negative regulatory and internalization domains, whereas more distal truncations induced by frameshift mutants confer EPO hypersensitivity because of the appearance of a new C-terminal tail. The latter, by increasing EPOR stability at the cell surface, may cause pre-activation of both receptor and JAK2, constitutive signaling and hypersensitivity to EPO close to that of JAK2V617F-positive PVs. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 217 (9) ◽  
Author(s):  
James W. Swann ◽  
Lada A. Koneva ◽  
Daniel Regan-Komito ◽  
Stephen N. Sansom ◽  
Fiona Powrie ◽  
...  

An important comorbidity of chronic inflammation is anemia, which may be related to dysregulated activity of hematopoietic stem and progenitor cells (HSPCs) in the bone marrow (BM). Among HSPCs, we found that the receptor for IL-33, ST2, is expressed preferentially and highly on erythroid progenitors. Induction of inflammatory spondyloarthritis in mice increased IL-33 in BM plasma, and IL-33 was required for inflammation-dependent suppression of erythropoiesis in BM. Conversely, administration of IL-33 in healthy mice suppressed erythropoiesis, decreased hemoglobin expression, and caused anemia. Using purified erythroid progenitors in vitro, we show that IL-33 directly inhibited terminal maturation. This effect was dependent on NF-κB activation and associated with altered signaling events downstream of the erythropoietin receptor. Accordingly, IL-33 also suppressed erythropoietin-accelerated erythropoiesis in vivo. These results reveal a role for IL-33 in pathogenesis of anemia during inflammatory disease and define a new target for its treatment.


Blood ◽  
1997 ◽  
Vol 90 (5) ◽  
pp. 2057-2061 ◽  
Author(s):  
Robert Kralovics ◽  
Karel Indrak ◽  
Tomas Stopka ◽  
Brian W. Berman ◽  
Jaroslav F. Prchal ◽  
...  

Abstract Primary polycythemias are caused by an acquired or inborn mutation affecting hematopoietic/erythroid progenitors that results in an abnormal response to hematopoietic cytokines. Primary familial and congenital polycythemia (PFCP; also known as familial erythrocytosis) is characterized by elevated red blood cell mass, low serum erythropoietin (EPO) level, normal oxygen affinity of hemoglobin, and typically autosomal dominant inheritance. In this study we screened for mutations in the cytoplasmic domain of the EPO receptor (EPOR; exons 7 and 8 of the EPOR gene) in 27 unrelated subjects with primary or unidentified polycythemia. Two new EPOR mutations were found, which lead to truncation of the EPOR similarly to previously described mutations in PFCP subjects. The first is a 7-bp deletion (del59855991) found in a Caucasian family from Ohio. The second mutation (5967insT) was found in a Caucasian family from the Czech Republic. In both cases the EPO dose responses of the erythroid progenitors of the affected subjects were examined to confirm the diagnosis of PFCP. In one of these families, the in vitro behavior of erythroid progenitors in serum-containing cultures without the addition of EPO mimicked the behavior of polycythemia vera progenitors; however, we show that antibodies against either EPO or the EPOR distinguish the in vitro growth abnormality of polycythemia vera erythroid progenitors from that seen in this particular PFCP family. We conclude that PFCP is a disorder that appears to be associated in some families with EPOR mutations. So far, most of the described EPOR mutations (6 out of 8) associated with PFCP result in an absence of the C-terminal negative regulatory domain of the receptor.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4213-4213
Author(s):  
Nami Nogawa ◽  
Youichi Aizawa ◽  
Nobuyoshi Kosaka ◽  
Takako Ishida ◽  
Takashi Kato

Abstract Cross-species comparisons of hematopoietic systems will elucidate the conservation and diversity among species such as zebrafish, Xenopus, chick and mouse, which are not only of interest but different approaches would contribute to general hematology. To begin to understand their hematopoietic systems, particularly the whole animal-physiology, across non-mammalian vertebrates, we have focused on amphibian hematopoiesis. We tried to clarify the localization of definitive hematopoietic progenitors in adult Xenopus laevis, which is still to be determined. When Xenopus was induced acute hemolytic anemia by intraperitoneal phenylhydrazine (PHZ) administration, immature erythroblasts emerging in the circulation and notable increase in erythropoiesis within the liver were observed. We first screened putative hematopoietic tissues, liver, spleen, bone marrow and kidney, for erythroid progenitors using polyclonal antibodies to putative Xenopus erythropoietin receptor (xlEPOR) that we recently identified. MACS and FACS sorting and analysis revealed the existence of xlEPOR expressing cells in both liver and anemic peripheral blood. These xlEPOR positive cells were hemoglobin-positive with o-dianisidine staining, and had typical blastic morphology with high nucleus-to-cytoplasm ratio. We next developed and established an in vitro colony assay system to identify and score the hematopoietic progenitors retrospectively. The method enabled the identification and quantification of erythroid progenitors. Briefly, cells were prepared from liver, spleen, bone marrow and kidney followed by placing in semi-solid culture medium (α-MEM containing 0.8% methylcellulose, 20% FCS with appropriate hematopoietic stimulators), and cultured at 23°C with 5% CO2. The anemic serum exhibited the apparent erythropoietic stimulating activity toward the formation of remarkable number of colonies derived from anemic peripheral blood cells, resembling typical mammalian hematopoietic colony formation. Most of the colonies consisted of hemoglobin-expressing erythroids after two days culture, indicating that colony-forming units-erythroid (CFU-e) appeared in anemic blood. The normal and anemic liver also contained CFU-e, resulting in the formation of mixed and pure hematopoietic colonies. This also proved to be a useful in vitro assay system for identifying and quantifying various hematopoietic progenitors and activities of related cytokines. Figure shows the number of erythroid colonies derived from PHZ-induced anemic peripheral blood and liver stimulated with anemic serum. We furthermore examined spleen and bone marrow side-by-side, since amphibian hematopoietic system is known to unique as erythropoiesis, granulopoiesis, and thrombopoiesis occur at distinct organs. The results demonstrated the direct evidences of predominant contribution of adult liver to erythropoiesis rather than bone marrow or spleen. A new animal model developed here should provide new insights into the basis of hematopoietic regulations. Figure Figure


Sign in / Sign up

Export Citation Format

Share Document