Thymoglobulin (Polyclonal Rabbit Anti Thymocyte Globulin) Has In Vivo Activity in a Mouse Model of Myeloma.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3487-3487
Author(s):  
Michael Timm ◽  
Linda Wellik ◽  
Teresa Kimlinger ◽  
Jessica Haug ◽  
Michael Kline ◽  
...  

Abstract Background: Multiple myeloma remains incurable with current approaches and newer therapies are needed to improve the outcome of these patients. While monoclonal antibody based therapies have been successful in some of the hematological malignancies, such approaches have had limited efficacy in the setting of myeloma. Thymoglobulin (polyclonal rabbit antithymocyte globulin, Genzyme) (Thymo) has been extensively evaluated in the setting of allogeneic blood and marrow transplantation and solid organ transplants. Given the polyclonal nature of this product, with antibodies against different B cell antigens, we evaluated the in vitro and in vivo activity of Thymo in myeloma. Methods: MM cell lines were cultured in RPMI 1640 containing 10% fetal bovine serum supplemented with L-Glutamine, penicillin, and streptomycin. The KAS-6/1 cell line was also supplemented with 1 ng/ml IL-6. Cytotoxicity following drug treatment was measured using the MTT viability assay. Apoptosis was measured by flow cytometry using Annexin V/PI in cell lines and Apo 2.7 in primary patient plasma cells. Shifts in expression of a variety of different B cell and plasma cell antigens were examined on several different myeloma cell lines following Thymo treatment in order to identify the potential antigenic targets. In vivo activity of thymo was evaluated in a SCID plasmacytoma model injected with RPMI myeloma cell lines. Results: rATG was cytotoxic in vitro to several MM cell lines (RPMI 8226, U266, OPM1, OPM2) including the IL-6 dependent cell line Kas6/1 with LC50 of around 1 mg/mL. Additionally, thymo was cytotoxic MM cell lines resistant to conventional agents such as doxorubicin (Dox40), melphalan (LR5) and dexamethasone (MM1R). Thymo induced apoptosis in MM cell lines and in patient derived primary myeloma cells. When tested in combination with other anti-myeloma agents an additive effect was seen with doxorubicin, PS341 and melphalan. Using competitive flow cytometry, we identified CD138, CD38, Cd45, CD126, CD49d (VLA4), as well as CD20 as antigens likely to be targeted by Thymo. Tumor bearing mice injected with Thymo at two different doses (5 mg/kg and 10 mg/kg for five days) had significantly delayed tumor growth compared to non-injected mice, and this translated into a better survival for these mice. Mice receiving 10 mg/kg dose had a slower tumor growth compared to 5 mg/kg dose (Figure). Conclusions: Thymoglobulin has promising in vitro and in vivo activity in the setting of myeloma. These studies will provide the rational for future clinical development of this agent in myeloma alone or in combination with other agents. Based on these results, we are in the process of initiating a clinical trial combining Thymo with Melphalan. Figure Figure

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 39-39
Author(s):  
Kamil Bojarczuk ◽  
Kirsty Wienand ◽  
Jeremy A. Ryan ◽  
Linfeng Chen ◽  
Mariana Villalobos-Ortiz ◽  
...  

Abstract Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous disease that is transcriptionally classified into germinal center B-cell (GCB) and activated B-cell (ABC) subtypes. A subset of both GCB- and ABC-DLBCLs are dependent on B-cell receptor (BCR) signaling. Previously, we defined distinct BCR/PI3K-mediated survival pathways and subtype-specific apoptotic mechanisms in BCR-dependent DLBCLs (Cancer Cell 2013 23:826). In BCR-dependent DLBCLs with low baseline NF-κB activity (GCB tumors), targeted inhibition or genetic depletion of BCR/PI3K pathway components induced expression of the pro-apoptotic HRK protein. In BCR-dependent DLBCLs with high NF-κB activity (ABC tumors), BCR/PI3K inhibition decreased expression of the anti-apoptotic NF-κB target gene, BFL1. Our recent analyses revealed genetic bases for perturbed BCR/PI3K signaling and defined poor prognosis DLBCL subsets with discrete BCR/PI3K/TLR pathway alterations (Nat Med 2018 24:679). Cluster 3 DLBCLs (largely GCB tumors) exhibited frequent PTEN deletions/mutations and GNA13 mutations. Cluster 5 DLBCLs (largely ABC tumors) had frequent MYD88L265P and CD79B mutations that often occurred together. These DLBCL subtypes also had different genetic mechanisms for deregulated BCL2 expression - BCL2 translocations in Cluster 3 and focal (18q21.33) or arm level (18q) BCL2 copy number gains in Cluster 5. These observations prompted us to explore the activity of PI3K inhibitors and BCL2 blockade in genetically defined DLBCLs. We utilized a panel of 10 well characterized DLBCL cell line models, a subset of which exhibited hallmark genetic features of Cluster 3 and Cluster 5. We first evaluated the cytotoxic activity of isoform-specific, dual PI3Kα/δ and pan-PI3K inhibitors. In in vitro assays, the PI3Kα/δ inhibitor, copanlisib, exhibited the highest cytotoxicity in all BCR-dependent DLBCLs. We next assessed the transcriptional abundance of BCL2 family genes in the DLBCLs following copanlisib treatment. In BCR-dependent GCB-DLBCLs, there was highly significant induction of the pro-apoptotic HRK. In BCR-dependent ABC-DLBCLs, we observed significant down-regulation of the anti-apoptotic BFL1 protein and another NF-κB target gene, BCLxL (the anti-apoptotic partner of HRK). We then used BH3 profiling, to identify dependencies on certain BCL2 family members and to correlate these data with sensitivity to copanlisib. BCLxL dependency significantly correlated with sensitivity to copanlisib. Importantly, the BCLxL dependency was highest in DLBCL cell lines that exhibited either transcriptional up-regulation of HRK or down-regulation of BCLxL following copanlisib treatment. In all our DLBCL cell lines, PI3Kα/δ inhibition did not alter BCL2 expression. Given the genetic bases for BCL-2 deregulation in a subset of these DLBCLs, we next assessed the activity of the single-agent BCL2 inhibitor, venetoclax, in in vitro cytotoxicity assays. A subset of DLBCL cell lines was partially or completely resistant to venetoclax despite having genetic alterations of BCL2. We postulated that BCR-dependent DLBCLs with structural alterations of BCL2 might exhibit increased sensitivity to combined inhibition of PI3Kα/δ and BCL2 and assessed the cytotoxic activity of copanlisib (0-250 nM) and venetoclax (0-250 nM) in the DLBCL cell line panel. The copanlisib/venetoclax combination was highly synergistic (Chou-Talalay CI<1) in BCR-dependent DLBCL cell lines with genetic bases of BCL2 deregulation. We next assessed copanlisib and venetoclax activity in an in vivo xenograft model using a DLBCL cell line with PTENdel and BCL2 translocation (LY1). In this model, single-agent copanlisib did not delay tumor growth or improve survival. Single-agent venetoclax delayed tumor growth and improved median survival (27 vs 51 days, p<0.0001). Most notably, we found that the combination of copanlisib and venetoclax delayed tumor growth significantly longer than single-agent venetoclax (p<0.0001). Additionally, the combined therapy significantly increased survival in comparison with venetoclax alone (median survival 51 days vs not reached, p<0.0013). Taken together, these results provide in vitro and in vivo pre-clinical evidence for the rational combination of PI3Kα/δ and BCL2 blockade and set the stage for clinical evaluation of copanlisib/venetoclax therapy in patients with genetically defined relapsed/refractory DLBCL. Disclosures Letai: AbbVie: Consultancy, Other: Lab research report; Flash Therapeutics: Equity Ownership; Novartis: Consultancy, Other: Lab research report; Vivid Biosciences: Equity Ownership; AstraZeneca: Consultancy, Other: Lab research report. Shipp:AstraZeneca: Honoraria; Merck: Research Funding; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer: Research Funding.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5190-5190
Author(s):  
Shaji Kumar ◽  
Michael Timm ◽  
Terry Kimlinger ◽  
Michael Kline ◽  
Jessica L. Haug ◽  
...  

Abstract Background: Multiple myeloma is a plasma cell malignancy that remains incurable with current approaches and newer therapies are needed to improve the outcome of patients with MM. While monoclonal antibody base therapies have been successful in some of the hematological malignancies, especially lymphoma, such approaches have not been very useful in the setting of myeloma. Targeting of antigens like CD138 on the myeloma cell surface has been hampered by the ubiquitous nature of this protein in the body. Thymoglobulin (polyclonal rabbit antithymocyte globulin, Genzyme) has been extensively evaluated in the setting of allogeneic blood and marrow transplantation and is currently in clinical use. Given the polyclonal nature of this product, it has antibodies against several B cell antigens and forms the rationale for its evaluation in B cell malignancies like myeloma. Methods: MM cell lines were cultured in RPMI 1640 containing 10% fetal bovine serum supplemented with L-Glutamine, penicillin, and streptomycin. The KAS-6/1 cell line was also supplemented with 1 ng/ml IL-6. Cytotoxicity following drug treatment was measured using the MTT viability assay. Drug induced apoptosis in the cell lines was measured by flow cytometry after staining with Annexin V-FITC and propidium iodide (PI). Apoptosis in primary patient derived plasma cells following treatment was measured after staining for Apo 2.7. Results: rATG was cytotoxic in vitro to several MM cell lines (RPMI 8226, U266, OPM1, OPM2) including the IL-6 dependent cell line Kas6/1. The LC50 in most of the cytotoxicity assays was around 1 mg/mL. Additionally, rATG was cytotoxic MM cell lines resistant to conventional agents such as doxorubicin (Dox40), melphalan (LR5) and dexamethasone (MM1R). The drug retained its cytotoxicity when myeloma cells were grown in the presence of various cytokines like IL-6, IGF-1 and VEGF. rATG treatment resulted in a time and dose dependent induction of apoptosis in MM cell lines. rATG was also able to induce apoptosis of freshly isolated myeloma cells from patient marrows. When tested in combination with other anti-myeloma agents an additive effect was seen with doxorubicin, PS341 and melphalan. Conclusions: Thymoglobulin appear to have in vitro activity against various myeloma cell lines as well as patient derived primary myeloma cells. Ability of the drug to overcome resistance to conventional drugs as well as the effect of combining rATG with these agents points towards non-overlapping mechanisms of action. Ongoing studies are trying to identify the particular B-cell antigens that are targeted by correlating response to expression of various B cell antigens expressed by these cell lines. These studies will provide the rational for future clinical development of this agent in myeloma alone or in combination with other agents.


2003 ◽  
Vol 77 (3) ◽  
pp. 2134-2146 ◽  
Author(s):  
Vicky M.-H. Sung ◽  
Shigetaka Shimodaira ◽  
Alison L. Doughty ◽  
Gaston R. Picchio ◽  
Huong Can ◽  
...  

ABSTRACT Hepatitis C virus (HCV) is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Studies of HCV replication and pathogenesis have so far been hampered by the lack of an efficient tissue culture system for propagating HCV in vitro. Although HCV is primarily a hepatotropic virus, an increasing body of evidence suggests that HCV also replicates in extrahepatic tissues in natural infection. In this study, we established a B-cell line (SB) from an HCV-infected non-Hodgkin's B-cell lymphoma. HCV RNA and proteins were detectable by RNase protection assay and immunoblotting. The cell line continuously produces infectious HCV virions in culture. The virus particles produced from the culture had a buoyant density of 1.13 to 1.15 g/ml in sucrose and could infect primary human hepatocytes, peripheral blood mononuclear cells (PBMCs), and an established B-cell line (Raji cells) in vitro. The virus from SB cells belongs to genotype 2b. Single-stranded conformational polymorphism and sequence analysis of the viral RNA quasispecies indicated that the virus present in SB cells most likely originated from the patient's spleen and had an HCV RNA quasispecies pattern distinct from that in the serum. The virus production from the infected primary hepatocytes showed cyclic variations. In addition, we have succeeded in establishing several Epstein-Barr virus-immortalized B-cell lines from PBMCs of HCV-positive patients. Two of these cell lines are positive for HCV RNA as detected by reverse transcriptase PCR and for the nonstructural protein NS3 by immunofluorescence staining. These observations unequivocally establish that HCV infects B cells in vivo and in vitro. HCV-infected cell lines show significantly enhanced apoptosis. These B-cell lines provide a reproducible cell culture system for studying the complete replication cycle and biology of HCV infections.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5722-5722
Author(s):  
Xun Ma ◽  
Ping Zhou ◽  
Monika Pilichowska ◽  
Chakra P Chaulagain ◽  
Sandy Wong ◽  
...  

Abstract Background Ig light chain (LC) diseases such as AL amyloidosis and monoclonal light-chain deposition disease are caused by pathologic free LC. Treatment is aimed at eliminating LC production but success is limited. RNA interference (RNAi) can stop LC production but the diversity of LC variable region sequences poses a challenge that targeting consensus sequences in the constant region (CR) of LC mRNA may overcome (Blood 2014;123:3440). We have developed siRNA pools designed to target the κ or λ LC CR mRNA in human plasma cells and impair LC production and secretion, and have shown that the pool targeting the λ LC CR can do so, and can also trigger a terminal unfolded protein response in clones producing intact Ig due to intracellular accumulation of unpaired heavy chains (ibid). Here we report the results of continued in vitro and in vivo testing of these pools in patient specimens and in a murine xenograft model. Methods Pools of siRNA for the κ or λ LC CR (si[IGLCκCR], si[IGLCλCR]) were custom produced with a non-target control (si[-]). They were introduced in vitro into human plasma cells by an optimized streptolysin O-based method (SLO) and in a NOD.SCID xenograft flank plasmacytoma model by in vivo electroporation as per Gene Therapy 2011;18:1150. In vitro we evaluated LC gene expression, production and secretion at 24 hours in human myeloma cell lines and CD138-selected specimens from patients with plasma cell neoplasms, using real-time PCR (qPCR) for LC mRNA, flow cytometry for intracellular LC mean fluorescence intensity (MFI) and ELISA (Bethyl Laboratories) for LC secretion in 24-hour suspension cultures (106 cells/ml). In vivo we inoculated each of the flanks of NOD.SCID mice with 107 human myeloma cells (ALMC-1 or ALMC-2). When plasmacytomas were 0.5cm3 we injected si[IGLCλCR] or si[-] one time to each flank plasmacytoma respectively, allowing each mouse to serve as its own control. Two days later, the mice were sacrificed and the plasmacytomas excised for qPCR for λ LC mRNA and serum was obtained to measure human λ LC levels by ELISA. Results We have previously described results with siRNA targeting the λ LC CR in human cell lines that make λ LC (ALMC-1, ALMC-2, EJM, OPM2, MM.1S, and MM.1R) and in 16 AL λ patient specimens. We demonstrated significant decreases in LC mRNA, intracellular LC MFI, and λ LC secretion by cell lines (Blood 2014;123:3220); moreover, transcriptional profiling indicated minimal off-target effects (ibid; Supplement). We now report that in vitro secretion of λ LC by CD138-selected plasma cells from AL patients (n=3, newly diagnosed λ) treated with si[IGLCλCR] was reduced by 65% from a mean of 3.1 to 1.0µg/ml and that the residual λ LC mRNA was 49% of control. Similarly we treated κ LC secreting human myeloma cell lines with si[IGLCκCR] and si[-] (IM9, H929, JJN-3, and ARH77). By qPCR the residual κ LC mRNA was 13%, by flow cytometry the MFI was reduced by a median of 67.3% (22.5-90.8), and by ELISA mean κ LC secretion was reduced from 3.7 to 0.8µg/ml (P = 0.055, paired t test). We treated CD138-selected κ patient samples (AL 3, LCDD 1, MM 6) in the same way. By qPCR the residual κ LC mRNA was 57% control, by flow cytometry the MFI was reduced by a median of 37.5% (14-69.8), and by ELISA secretion was reduced from 9.4 to 6.5µg/ml (P = 0.02, paired t test). In the murine dual-flank xenograft model employing λ secreting cells, by qPCR there was a reduction in λ LC mRNA with si[IGLCλCR] treatment in 13 of 16 mice (ALMC-1 11/114, ALMC-2 2/2). In these 14, the median λ LC expression was 66% of control (range, 17-97). In 6/13 the average reduction in λ LC expression was 59%. Of note, measurable levels of human λ LC were found in the blood of all mice at sacrifice. Conclusion With one pool of siRNA targeting the constant region of the κ or λ LC we can significantly reduce production and secretion of LC by clonal human plasma cells, including patient cells, and also reduce the expression of LC in xenograft plasmacytomas in vivo. Two methods of siRNA delivery have been employed in this work thus far, SLO and in vivo electroporation, neither of which require endosomal escape. The specificity of the siRNA pools for plasma cell LC genes and the possible receptivity of plasma cells to RNAi are important positive aspects of this work. Further pre-clinical development of Ig LC CR RNAi employing lipid-based nanoparticle platforms is warranted in order to optimize cell-specific delivery, delivery efficiency and siRNA targeting. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1142-1142
Author(s):  
Jennifer Totman ◽  
Dorothy Brach ◽  
Vinny Motwani ◽  
Selene Howe ◽  
Emily Deutschman ◽  
...  

Abstract Introduction: SETD2 is the only known histone methyltransferase (HMT) capable of catalyzing H3K36 trimethylation (H3K36me3) in vivo. It plays an important role in several biological processes including B cell development and maturation, leading to the hypothesis that SETD2 inhibition in these settings could provide anti-tumor effects. The normal process of B cell development/maturation renders B cells susceptible to genetic vulnerabilities that can result in a dysregulated epigenome and tumorigenesis, including in multiple myeloma (MM) and diffuse large B-cell lymphoma (DLBCL). For example, 15%-20% of MM harbors the high risk (4;14) chromosomal translocation, resulting in high expression of the multiple myeloma SET domain (MMSET) gene. MMSET is an HMT that catalyzes H3K36me1 and H3K36me2 formation and extensive scientific work has established overexpressed MMSET as a key factor in t(4;14) myeloma pathogenesis. To the best of our knowledge MMSET has eluded drug discovery efforts, however, since t(4;14) results in high levels of the H3K36me2 substrate for SETD2, inhibiting SETD2 offers promise for targeting the underlying oncogenic mechanism driven by MMSET overexpression in t(4;14) MM patients. In addition, SETD2 loss of function mutations described to date in leukemia and DLBCL are always heterozygous, suggesting a haploinsufficient tumor suppressor role for SETD2. This observation points to a key role for SETD2 in leukemia and lymphoma biology and suggests that therapeutic potential of SETD2 inhibition may also exist in these or similar settings. EZM0414 is a first-in-class, potent, selective, orally bioavailable small molecule inhibitor of the enzymatic activity of SETD2. We explored the anti-tumor effects of SETD2 inhibition with EZM0414 in MM and DLBCL preclinical studies to validate its potential as a therapy in these tumor types. Methods: Cellular proliferation assays determined IC 50 values of EZM0414 in MM and DLBCL cell line panels. Cell line-derived xenograft preclinical models of MM and DLBCL were evaluated for tumor growth inhibition (TGI) in response to EZM0414. H3K36me3 levels were determined by western blot analysis to evaluate target engagement. Combinatorial potential of SETD2 inhibition with MM and DLBCL standard of care (SOC) agents was evaluated in 7-day cotreatment in vitro cellular assays. Results: Inhibition of SETD2 by EZM0414 results in potent anti-proliferative effects in a panel of MM and DLBCL cell lines. EZM0414 inhibited proliferation in both t(4;14) and non-t(4;14) MM cell lines, with higher anti-proliferative activity generally observed in the t(4;14) subset of MM cell lines. The median IC 50value for EZM0414 in t(4;14) cell lines was 0.24 μM as compared to 1.2 μM for non-t(4;14) MM cell lines. Additionally, inhibitory growth effects on DLBCL cell lines demonstrated a wide range of sensitivity with IC 50 values from 0.023 μM to &gt;10 μM. EZM0414 resulted in statistically significant potent antitumor activity compared to the vehicle control in three MM and four DLBCL cell line-derived xenograft models. In the t(4;14) MM cell line-derived xenograft model, KMS-11, robust tumor growth regressions were observed at the top two doses with maximal TGI of 95%. In addition, two non-t(4;14) MM (RPMI-8226, MM.1S) and two DLBCL xenograft models (TMD8, KARPAS422) demonstrated &gt; 75% TGI; with two additional DLBCL models (WSU-DLCL2, SU-DHL-10) exhibiting &gt; 50% TGI in response to EZM0414. In all models tested, the antitumor effects observed correlated with reductions in intratumoral H3K36me3 levels demonstrating on-target inhibition of SETD2 methyltransferase activity in vivo. In vitro synergistic antiproliferative activity was also observed when EZM0414 was combined with certain SOC agents for MM and DLBCL. Conclusions: Targeting SETD2 with a small molecule inhibitor results in significantly reduced growth of t(4;14) MM, as well as non-t(4;14) MM and DLBCL cell lines, in both in vitro and in vivo preclinical studies. In addition, in vitro synergy was observed with EZM0414 and certain SOC agents commonly used in MM and DLBCL, supporting the combination of SETD2 inhibition with current MM and DLBCL therapies. This work provides the rationale for targeting SETD2 in B cell malignancies such as MM, especially t(4;14) MM, as well as DLBCL, and forms the basis for conducting Phase 1/1b clinical studies to evaluate the safety and activity of EZM0414 in patients with R/R MM and DLBCL. Disclosures Totman: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Brach: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Motwani: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Howe: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Deutschman: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Lampe: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Riera: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Tang: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Eckley: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Alford: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Duncan: Epizyme, Inc.: Divested equity in a private or publicly-traded company in the past 24 months, Ended employment in the past 24 months. Farrow: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Dransfield: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Raimondi: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Thomeius: Foghorn Therapeutics: Current Employment, Current equity holder in publicly-traded company. Cosmopoulos: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company. Kutok: Epizyme, Inc.: Current Employment, Current equity holder in publicly-traded company.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 271-271
Author(s):  
Matthew S. McKinney ◽  
Anne W Beaven ◽  
Andrea Moffitt ◽  
Jason Landon Smith ◽  
Eric Lock ◽  
...  

Abstract Background: HDAC inhibitors (HDACi) are being investigated as treatment for relapsed/refractory non Hodgkin lymphoma (NHL) and other cancers. However, the mechanisms underlying sensitivity and resistance to HDAC inhibition in lymphomas have not been fully characterized. We probed the cellular and molecular response to HDACi in vitro and in vivo in order to determine factors that dictate the response to HDACi and to enable design of approaches to incorporate HDACi into novel combination therapeutics. Methods: High-throughput cytotoxicity screening was performed using two different HDAC inhibitors, LBH589 (panobinostat) and SAHA (vorinostat) in 52 lymphoid cell lines characterized through RNA-seq and microarray gene expression profiling. This screen revealed a greater than 50-fold range in concentration needed to induce cytotoxicity for the 2 different HDAC inhibitors and there was moderate correlation between the 2 compounds in this panel (Pearson correlation r = 0.76, p < 0.01). By pairing this chemosensitivity data with gene expression profiles of the screened cell lines, we developed a gene expression classifier for LBH589 that identified resistant and sensitive cell line groups. This predictor was applied to B-cell NHL cell lines tested with LBH589 in the Cancer Cell Line Encyclopedia (CCLE) and we found that the sensitive and resistant cell line groups distinguished by this method differed more than 5-fold in IC50 (0.021 vs. 1.24 nM, P < 0.01 by Wilcoxon rank sum), thus validating the ability of this approach to distinguish HDACi resistant cell lines. We further initiated a clinical trial of LBH589 in relapsed/refractory diffuse large B cell lymphoma patients combined with RNAseq profiling of their tumors prior to embarking on treatment. We treated nine patients with LBH589, and application of our response predictor to scaled RNAseq gene expression data revealed 4 predicted responders and 5 predicted non-responders. Two of the predicted responders had a clinical response to LBH589, whereas none of the predicted non-responders had a clinical response, thus our classifier was able to identify all of the LBH589-responsive patients from this cohort (P = 0.08 by Fisher's exact test). Analysis of differentially expressed molecular pathways in HDACi sensitive and resistant samples by gene set enrichment revealed the JAK-STAT pathway as the most differentially expressed pathway associated with HDACi resistance (at P < 0.001 and FDR < 0.20). We further identified a number of distinct mutations including STAT3, SOCS1 and JAK1 that were associated with activation of the JAK-STAT pathway by gene expression signatures and the LBH589 response signature in DLBCL cell lines and patient samples by analysis of RNA-seq data. Phosphoprotein analysis by Western blot and Sis-inducible-element (SIE) luciferase reporter assays were used to confirm JAK-STAT activation in these samples and we found that overexpression of STAT3 Src-homology domain mutations activated JAK-STAT3 signaling in isogenic cell lines and fostered resistance to LBH589 in vitro. Conversely, using in vivo DLBCL xenograft models, we found that combining JAK-STAT and HDAC inhibition by treatment with LBH589 and ruxolitinib resulted in synergistic reduction of tumor cell viability and tumor growth with tolerable toxicity in mice. Conclusions: Sustained JAK-STAT activation appears to mediate resistance to HDAC inhibition in DLBCL and other NHLs and several recurrent genetic lesions drive JAK-STAT activation in these diseases. This process can be overcome by JAK 1/2 inhibition with ruxolitinib and these findings demonstrate a role for combination therapy with HDAC inhibitors and small molecules targeting the JAK-STAT pathway in lymphoid malignancies. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 377-377
Author(s):  
Maryam Ghalandary ◽  
Yuqiao Gao ◽  
Martin Becker ◽  
Diana Amend ◽  
Klaus H. Metzeler ◽  
...  

Abstract Background: The prognosis of patients with acute myeloid leukemia (AML) remains poor and novel therapeutic options are intensively needed. Targeted therapies specifically address molecules with essential function for AML and deciphering novel essential target genes is of utmost importance. Functional genomics via CRISPR\Cas9 technology paves the way for the systematic discovery of novel essential genes, but was so far mostly restricted to studying cell lines in vitro, lacking features of, e.g., primary tumor cells and the in vivo tumor microenvironment. To move closer to the clinical situation in patients, we used the CRISPR\Cas9 technology in patient-derived xenograft (PDX) models of AML in vivo. Methods: Primary tumor cells from seven patients with AML were transplanted into immunocompromised NSG mice and serially transplantable PDX models derived thereof. PDX models were selected which carry the AML specific mutations of interest at variant allele frequencies close to 0.5. PDX cells were lentivirally transduced to express the Cas9 protein and a sgRNA; successfully transduced PDX cells were enriched by flow cytometry gating on a recombinant fluorochrome or by puromycin. The customized sgRNA library was designed using the CLUE (www.crispr-clue.de) platform and cloned into a lentiviral vector with five different sgRNAs per target gene, plus positive and negative controls (Becker et al., Nucleic Acids Res. 2020). PDX cells were lentivirally transduced with the CRISPR/Cas9 sgRNA library, transplanted into NSG mice, grown in vivo and cells re-isolated at advanced AML disease. sgRNA distribution was measured by next generation sequencing and compared to input control using the MAGeCK pipeline. Interesting dropout hits from PDX in vivo screens were validated by fluorochrome-guided competitive in vivo experiments in the PDX models, comparing growth of PDX AML cells with knockout of the gene of interest versus control knockout in the same mouse. PDX cells were transduced with lentiviral vectors expressing a single sgRNA, using in parallel three different sgRNAs per target gene. Targeting and control sgRNAs were marked by different fluorochromes; PDX cells expressing targeting or control sgRNA were mixed at a 1:1 ratio, injected into NSG mice and PDX models competitively grown until advanced disease stage, when cell distributions was determined by flow cytometry. Human AML cell lines were studied in vitro for comparison. Results: In search for genes with essential function in AML, we cloned a small customized sgRNA library targeting 34 genes recurrently mutated in AML and tested the library in two PDX AML models in vivo. From the dropouts, we validated most interesting target genes using fluorochrome-guided competitive in vivo assays. Knockout of NPM1 abrogated in vivo growth in all PDX AML models tested, reproducing the known common essential function of NPM1. KRAS proved an essential function in PDX AML models both with and without an oncogenic mutation in KRAS, although with a stronger effect upon KRAS mutation, suggesting that patients with tumors both with and without KRAS mutation might benefit from treatment inhibiting KRAS. Surprising results were obtained for WT1 and DNMT3A. Both genes are frequently mutated in AML, but most AML cell lines tested in vitro do not show an essential function of any of the two genes, in published knockdown or knockout data, including from the Cancer Dependency Map database. On the contrary, knockout of either WT1 or DNMT3A was shown to enhance growth of AML cell lines and increase leukemogenesis in certain models. In PDX models in vivo, we found a clearly essential function for DNMT3A in all AML samples and WT1 in most samples tested and PDX in vivo results were discordant to cell line in vitro data, suggesting that cell line inherent features and/or the in vivo environment influence the function of WT1 and DNMT3A. Conclusion: We conclude that functional genomics in PDX models in vivo allows discovering essentialities hidden for cell line in vitro approaches. WT1 and DNMT3A harbor the potential to represent attractive therapeutic targets in AML under in vivo conditions, warranting further evaluation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5123-5123 ◽  
Author(s):  
Mark Joseph Axelrod ◽  
Peter Fowles ◽  
Jeff Silverman ◽  
Astrid Clarke ◽  
Jennifer Tang ◽  
...  

Abstract Background Entospletinib (GS-9973) selectively inhibits spleen tyrosine kinase (SYK), a critical signaling component of the BCR pathway that is expressed primarily in cells of hematopoietic lineage including normal and malignant B-lymphocytes. Entospletinib is currently in phase II clinical trials, where it has demonstrated both a high degree of safety as well as efficacy against chronic lymphocytic leukemia (Sharman, J., et al. Blood, 2015) and other B cell malignancies. Despite these successes, new therapeutic options, including combinations with standard of care agents, are needed in order to achieve the goal of curing disease through finite treatment. We show here that the combination of entospletinib and vincristine causes synergistic apoptosis in vitro in a broad panel of cell lines derived from hematological cancers including diffuse large B cell lymphoma (DLBCL), acute lymphocytic leukemia, follicular lymphom), multiple myeloma, and acute myelogenous leukemia. We also evaluated and compared the in vivo efficacy of entospletinib and vincristine as singe agents and in combination in a DLBCL tumor xenograft model using the SU-DHL-10 cell line. Methods In vitro growth inhibition of a panel of malignant hematological cell lines was assessed using CellTiter-Glo™ Assay (Promega) after 72h incubation with entospletinib or vincristine alone or in combination. Synergy was evaluated using the Bliss model of independence (Meletiadis, J., et al., Med Mycol, 2005). In vivo, SU-DHL-10 cells (5 x 106 cells) were implanted subcutaneously in the axilla in male SCID beige mice. All mice were sorted into study groups on Day 16 such that each group's mean tumor volume fell within 10% of the overall mean (197mm3). Dosing was initiated on Day 16 and animals were dosed for 17 days. Plasma concentrations of entospletinib and vincristine were assessed on Day 19, and the entospletinib 75 mg/kg dose was lowered on Day 22 to 50 mg/kg to approximate the human achievable SYK target coverage of EC80. Efficacy and tolerability were evaluated by tumor measurements and body weight monitored three times weekly. Tumor burden data were analyzed by the application of a two-way analysis of variance (ANOVA), with post-hoc analysis. Results In vitro combinations of entospletinib with low concentrations of vincristine resulted in marked inhibition of cell proliferation and induction of apoptosis in a broad panel of 19 tumor cell lines representing major B cell malignancies including DLBCL. The combination of entospletinib with vincristine had a profound inhibitory effect on proliferation in all subtypes of DLBCL. Entospletinib was evaluated at a concentration equivalent to the Cminof the clinical dose and vincristine was used at concentrations (≤ 10 nM) that had little to no significant single agent effect in these cell lines. In vivo in a SU-DHL-10 xenograft model, entospletinib dosed alone at 25 or 75/50 mg/kg significantly inhibited tumor growth, causing 39% and 20% tumor growth inhibition (TGI), respectively, compared to the vehicle-treated control group. Vincristine administered at either 0.15 and 0.5 mg/kg Q7D x 3 also resulted in significant TGI (42% and 85% TGI, respectively). The addition of entospletinib (75/50 mg/kg) to 0.5 mg/kg or 0.15 mg/kg vincristine resulted in a significant increase in TGI from 85% to 96% (p= 0.001) and 42% to 71% (p< 0.0001), respectively. The addition of entospletinib (25 mg/kg) to vincristine did not significantly increase the tumor growth inhibition. While the groups receiving either entospletinib or vincristine as single agents had no complete or partial tumor regression, 50% of the mice receiving the combination of 75/50 mg/kg entospletinib with 0.5 mg/kg vincristine had partial responses, 8% had complete regression and 8% were tumor free at the end of study (Figure 1). Conclusion Entospletinib and vincristine demonstrated efficacy and tolerability both alone and in combination in the SU-DHL-10 DLBCL cell line xenograft model in SCID beige mice. Vincristine combinations with entospletinib showed significantly greater efficacy than vincristine alone. These data support the further clinical development of entospletinib in combination with vincristine for the treatment of DLBCL. a ENTO: PO: Q12H x 2 (Day 16-32) b VCR: IV: Q7D x 3 (Days 18, 25, 32) Figure 1. Tumor Regressions in an Entospletinib/ Vincristine Treated Murine DLBCL Xenograft Figure 1. Tumor Regressions in an Entospletinib/ Vincristine Treated Murine DLBCL Xenograft Disclosures Axelrod: Gilead Sciences: Employment, Equity Ownership. Fowles:Gilead Sciences: Employment, Equity Ownership. Silverman:Gilead Sciences: Employment, Equity Ownership. Clarke:Gilead Sciences: Employment, Equity Ownership. Tang:Gilead Sciences: Employment, Equity Ownership. Rousseau:Gilead Sciences: Employment, Equity Ownership. Webb:Gilead Sciences: Employment, Equity Ownership. Di Paolo:Gilead Sciences: Employment, Equity Ownership.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2408-2408
Author(s):  
Alexander JA Deutsch ◽  
Beate Rinner ◽  
Martin Pichler ◽  
Sonja Reitter ◽  
Christine Beham-Schmid ◽  
...  

Abstract Abstract 2408 NR4A1 (Nur77) and NR4A3 (Nor-1) are two members of the orphan nuclear receptors (NRs). Their function as critical tumour suppressor genes (TSG) is demonstrated by the rapid development of acute myeloid leukemia (AML) of NR4A1 and NR4A3 double knock out mouse and by their reduced expression in leukemic blasts from human AML patients. The aim of our study is to comprehensively study NR4A1 and NR4A3 expression B-cell malignancies and to define and functionally characterize the nuclear orphan receptors NR4A1 as TSGs in B-cell malignancies. We found a more than 50% reduction of both, NR4A1 and NR4A3, in B-CLL (71%) and Follicular Lymphoma (70%), and in diffuse large B cell lymphoma (DLBCL) (74%) compared to normal controls. In DLBCL low NR4A1 expression was significantly associated with non-germinal center B-cell subtype and with poor overall survival (p=0.042, HR=2.2, CI=1.01–4.9). To investigate the function of NR4A1 in lymphomas, we over-expressed NR4A1 in a lymphoma cell line (Sc-1) by using an inducible lentiviral expression system and performed apoptotic assays by determing cleaved caspase 3, the sub-G1 peak and Annexin V positivity. Induction of NR4A1 expression led to apoptosis in a significantly higher proportion of induced Sc-1 cells compared to their uninduced controls in all assays analysed. Additionally, treatment of an immortalized B cell line (UH3) and three lymphoma cell lines (Karpas422, SC-1 and Ly8) with Cytosporone B (Csn-B), a NR4A1 ligand known to induce NR4A1, caused NR4A1 mediated apoptosis. To test the tumor suppressor function of NR4A1 in vivo, the stably transduced Sc-1 lymphoma cell lines were further investigated in a NOD/SCID/IL-2rγnull (NSG) mouse model. Induction of NR4A1 in Sc-1 suppressed tumor growth in the NSG mice, in contrast to vector controls and uninduced Sc-1 cells, where massive tumor formation was observed. Our data suggest that NR4A1 has pro-apoptotic functions in vitro and that Csn-B induces a NR4A1 mediated apoptosis in lymphoma cells. Our xengraft experiments define NR4A1 as novel tumor suppressor in vivo. Hence, regulation of NR4A1 is a promising new therapeutical target for future anti-lymphomatherapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5728-5728
Author(s):  
Ferit Avcu ◽  
Mustafa Guner ◽  
Muammer Misirci ◽  
Pinar Elci ◽  
Mukerrem Safali ◽  
...  

Abstract Ankaferd Blood Stopper (ABS), a unique traditional herbal mixture, has been used topically to stop bleeding for centuries in Anatolia. As well as ABS has been used as a blood-stopping agent, it may also have a considerable therapeutic benefit, because of its anti-infective, anti-neoplastic, and wound healing properties. The aim of this study is to investigate the anti-neoplastic effects of the ABS on myeloma cell line, in vitro and on the plasmocytoma development in Balb/c mice by intraperitoneal injection of pristane, in vivo. We therefore sought to evaluate the efficacy of ABS on MM cells and to study the modulation of cell-death pathways. The cytotoxicity of ABS against the MM cell lines (RPMI-8226, and ARH-77) was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-dye reduction assay. Responses to ABS by RPMI-8226 and ARH-77 cell lines were dose dependent but not time dependent. The IC50 values for RPMI 8226 and ARH 77 myeloma cell lines in 24h were 12,84 μL/mL and 13,86 μL/mL, respectively. Various cell-death characteristics such as caspase-3, Bcl-2, Bax were studied in response to ABS, but we couldn’t demonstrate specific features of apoptotic cell death, in vitro. We have also investigated the effect of the ABS on the pristane (2.6.10.14-tetramethylpentadecane)-induced plasmacytoma (PCT) development on six-week-old BALB/c mice. Three groups of mice were treated with intraperitoneal ABS (1 mg/kg, 0.5mg/kg, and 0,1mg/kg) per-week for eight weeks after pristane-induced PCT development. The study was stopped at twelfth week, the remaining mice were autopsied, and peritoneal tissues were examined histologically for PCTs. A database of different groups’ mice was analyzed using Kaplan-Meier and Cox regression statistics based on variables. Kaplan-Meier analysis revealed a difference of the survival of pristane-induced alone between the groups of pristane-induced plus ABS 1 mg/kg, 0.5mg/kg, and 0.1mg/kg. (Log-rank, p=0.016; p<0.001 and p<0.001; respectively). The present results indicate that direct anti-tumor effect of ABS on pristane-induced PCT and significantly increased survival. This hypothesis needs to now be further investigated in clinical trials. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document