Fc Engineered Anti-CD19 Monoclonal Antibodies with Enhanced In Vitro Efficacy Against Multiple Lymphoma Cell Lines.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4747-4747
Author(s):  
Eugene A. Zhukovsky ◽  
Seung Chu ◽  
Matthew Bernett ◽  
Philip Hammond ◽  
Sher Karki ◽  
...  

Abstract CD19 is a pan-B cell surface receptor that is expressed from early stages of pre-B cell development through terminal differentiation into plasma cells. It is an attractive immunotherapy target for cancers of lymphoid origin since it is also expressed on the vast majority of Non-Hodgkin Lymphoma (NHL) cells. Although the anti-CD20 monoclonal antibody rituximab is efficacious for the treatment of lymphoid tumors, a growing population of rituximab-refractory patients has resulted in an unmet need for alternative B cell-specific immunotherapeutics. Engineered Fc variants that increase the affinity of IgG antibodies for Fc gamma receptors (FcγR) can dramatically enhance antibody-dependent cell-mediated cytotoxicity (ADCC). This technology has been applied to a humanized anti-CD19 antibody (XmAb™ CD19) and demonstrates ADCC against multiple cell lines representative of follicular lymphoma (FL/DOHH-2), chronic lymphocytic leukemia (CLL/MEC-1), B-cell acute lymphoblastic leukemia (B-ALL/VAL), mantle cell lymphoma (MCL/JeKo-1), hairy cell leukemia (HCL/BONNA-12), and Burkitt’s lymphoma (Raji). The ADCC activity observed is in striking contrast with a wild type IgG1 version of the antibody, which mediates little or no ADCC. Moreover, the XmAb™ CD19 activity is comparable to that of rituximab for the majority of cell lines tested and occasionally superior. Fc variants of this antibody are being evaluated in vitro for their ability to conduct ADCC by various effector cell populations, and in relevant in vivo efficacy models. In summary, these data suggest that anti-CD19 Fc variant antibodies with increased effector function could be promising as NHL immunotherapeutics, particularly for rituximab-refractory NHL.

2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 3021-3021
Author(s):  
E. Zhukovsky ◽  
S. Chu ◽  
M. Bernett ◽  
S. Karki ◽  
W. Dang ◽  
...  

3021 Background: CD19 is a pan-B cell surface receptor that is expressed from early stages of pre-B cell development through terminal differentiation into plasma cells. It is an attractive immunotherapy target for cancers of lymphoid origin since it is also expressed on the vast majority of Non-Hodgkin Lymphoma (NHL) cells as well as some leukemias. Despite major improvements in response rates and progression free survival the majority of NHL patients will relapse under the current combination chemotherapy with anti-CD20. Thus salvage regimens with new non-cross resistant antibody therapies are warranted. Methods: We employ our XmAb antibody engineering technology to increase the affinity of IgG antibodies for Fc gamma receptors (FcγR), improve the effector function of antibodies, and significantly increases their antitumor potency; we also we humanize and affinity mature such antibodies. Results: The XmAb technology was applied to a humanized anti-CD19 antibody to engineer a variant with significantly enhanced (10- to 100-fold) antibody-dependent cell-mediated cytotoxicity (ADCC). The resulting XmAb CD19 variant was assayed for ADCC against multiple cell lines representative of follicular lymphoma (FL), chronic lymphocytic leukemia (CLL), B-cell acute lymphoblastic leukemia (B-ALL), mantle cell lymphoma (MCL), hairy cell leukemia (HCL), chronic myelogenous leukemia (CML), and Burkitt’s lymphoma (BL). The ADCC activity of the XmAb CD19 was in striking contrast to a wild type IgG1 version of the antibody that mediates little ADCC. Moreover, ADCC potency and efficacy of the anti-CD19 Fc variant antibody were superior to that of rituximab: CLL - 10- and 1.5-fold higher, ALL - 10- and 100-fold higher, and HCL - 6- and 1.2-fold higher, respectively. Further, we observed no correlation between ADCC and antigen expression based on the measured cell surface density of CD19 for these cell lines. Conclusions: The increased affinity for FcγRs exhibited by the anti-CD19 Fc variant antibody overcomes much of the dependence of cytotoxicity on surface antigen density. Our data suggest that the anti-CD19 Fc variant antibody engineered for increased effector function could be a promising next-generation NHL immunotherapeutic. No significant financial relationships to disclose.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 881-881 ◽  
Author(s):  
Eugene A. Zhukovsky ◽  
Holly Horton ◽  
Matthias Peipp ◽  
Erik Pong ◽  
Matthew Bernett ◽  
...  

Abstract CD40, a transmembrane glycoprotein belonging to the tumor necrosis factor receptor family, is an attractive target for cancers of lymphoid origin since it is expressed on most mature B-cell malignancies, some early B-cell acute lymphocytic leukemias, and multiple myeloma. Finding efficient therapies for multiple myeloma (MM), chronic lymphocytic leukemia (CLL) and rituximab-refractory Non-Hodgkin Lymphoma (NHL) represents an unmet need. Several anti-CD40 antibodies, both agonistic and antagonistic, have demonstrated objective responses in early clinical NHL trials and thus validated this antigen as a target for lymphoproliferative diseases. Here we present the characterization of a novel Fc-engineered and humanized anti-CD40 antibody, XmAb®5485, that was generated using our XmAb antibody engineering technology. This antibody is highly cytotoxic against lymphoma, leukemia and multiple myeloma cell lines as well as primary cancer cells. XmAb5485 is characterized by: i) increased affinity for Fc gamma receptors (FcgR), ii) improved effector function, and iii) significantly increased antitumor potency. We investigated several direct and indirect (Fc-mediated) mechanisms of antibody-mediated cytotoxicity in vitro. The potency (EC50) of XmAb5485 in antibody-dependent cell-mediated cytotoxicity (ADCC) increased up to 150-fold relative to the native non Fc-engineered version (anti-CD40 IgG1) of the antibody in a screen of Burkitt’s lymphoma [BL], CLL and MM-derived cell lines. In the same cell lines, ADCC potency and maximal efficacy (% lysis) of XmAb5485 were also superior to that of rituximab: 74- and 1.3-fold higher in CLL, 12.5- and 1.4-fold higher in BL, and 190- and 1.9-fold higher in MM. In a MM cell line with low density of CD40 expression (~3500 per cell) XmAb5485 facilitated efficient ADCC whereas anti-CD40 IgG1 was virtually ineffective. Furthermore, using a BL cell line (Ramos) XmAb5485 displayed antibody-dependent cellular phagocytosis (ADCP) with potency and efficacy increased relative to rituximab (15- and 1.6-fold) and anti-CD40 IgG1 (5- and 1.2-fold). XmAb5485 also exhibited anti-proliferative apoptotic activity that was similar to that of rituximab. Ex vivo, XmAb5485 mediated potent ADCC of multiple primary patient-derived CLL, MCL, and plasma cell leukemia (PCL, an aggressive form of MM) cells, with substantially increased potency and efficacy relative to rituximab; in contrast, anti-CD40 IgG1 displayed minimal or no activity in these primary tumor cells. In vivo, in an established large (210–350 mm3) sc Ramos tumor xenograft model, 6 mg/kg XmAb5485 cured 80% of mice of detectable tumors and displayed statistically significant superiority over anti-CD40 IgG1. In contrast, only 7% of animals in the rituximab cohort were cured. In summary, our data suggest that XmAb5485, an anti-CD40 Fc variant antibody engineered for increased effector function, is a promising next-generation immunotherapeutic for leukemias, lymphomas, and multiple myeloma.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 49-49
Author(s):  
Qiuling Chen ◽  
Yuelong Jiang ◽  
Qinwei Chen ◽  
Long Liu ◽  
Bing Xu

Acute lymphoblastic leukemia (ALL) derives from the malignant transformation of lymphoid progenitor cells with ~85% being originated from B-cell progenitors (B-ALL). Despite fairly good prognoses for most pediatric B-ALL patients, the outcome is fatal in over 50% of adult patients who have a recurrent or progressive disease and lack of effective therapeutic approaches. Therefore, novel treatment strategies with high efficacy and low toxicity are an unmet need for B-ALL patients, especially those with relapsed or refractory status. Angiogenesis is a process of new vessel formation that requires the participation of multiple proangiogenic factors (e.g., VEGF, PDGF, and FGF) and their corresponding receptors (e.g., VEGFR, PDGFR, and FGFR). Angiogenesis, a well-established feature of solid tumors, also contributes to leukemia progression and correlates with the involvement of specific sanctuary sites in ALL, highlighting that the perturbation of angiogenesis would be an attractive approach for ALL treatment. Anlotinib is an oral tyrosine kinase (TKI) inhibitor with a broad range of antitumor effects via the suppression of VEGFR, PDGFR and FGFR. Of importance, anlotinib has been approved for the treatment of advanced lung cancer in China. Here, we evaluated the antileukemia activity of anlotinib in preclinical B-ALL models and its underlying molecular mechanisms. In this study, we observed that anlotinib significantly blunted the capability of cell proliferation and arrested cell cycle at G2 phase in B-ALL cell lines. Subsequently, we found that anlotinib resulted in remarkably enhanced apoptosis in B-ALL in vitro. To assess the in vivo antileukemia potential, we established a B-ALL patient-derived xenograft (PDX) mouse model and then treated the B-ALL PDX model with anlotinib. As a result, oral administration of anlotinib pronouncedly delayed in vivo B-ALL cell growth and reduced leukemia burden with acceptable safety profiles in this model. As for the mechanism of action, the antileukemia effect of anlotinib was associated with the disruption of the role of VEGFR2, PDGFRb, and FGFR3. Moreover, we revealed that this drug blocked the PI3K/AKT/mTOR/ signaling, a pathway that is linked with angiogenesis and its proangiogenic regulators, including VEGFR2, PDGFRb, and FGFR3. In aggregate, these results indicate that anlotinib is a potent antitumor agent for the treatment of B-ALL via the inhibition of angiogenic relevant pathways, which provide a novel potential treatment intervention for patients with B-ALL who have little effective therapy options. Disclosures No relevant conflicts of interest to declare. OffLabel Disclosure: Anlotinib originally designed by China is a novel orally active multitarget inhibitor that is evaluating in clinical trials against multiple solid tumors.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1419-1419
Author(s):  
Soraya Wuilleme-Toumi ◽  
Nelly Robillard ◽  
Patricia Gomez-Bougie ◽  
Philippe Moreau ◽  
Steven Le Gouill ◽  
...  

Abstract Multiple Myeloma (MM) is a fatal malignancy of B-cell origin characterized by the accumulation of plasma cells within the bone marrow. The expression of the pro-survival members of the Bcl-2 family has been shown to be a key process in the survival of myeloma cells. More particularly, Mcl-1 expression turned out to be critical for their survival. Indeed, knockdown of Mcl-1 by antisenses induces apoptosis in myeloma cells. Finally, Mcl-1 was found to be the only anti-apoptotic Bcl-2 family member which level of expression was modified by cytokine treatment of myeloma cells. For these reasons, we have evaluated the expression of Mcl-1 in vivo in normal, reactive and malignant plasma cells (PC) i.e., myeloma cells from 55 patients with MM and 20 human myeloma cell lines using flow cytometry. We show that Mcl-1 is overexpressed in MM in comparison with normal bone marrow PC. Forty-seven percent of patients with MM at diagnosis (p=.017) and 80% at relapse (p=.014 for comparison with diagnosis) overexpress Mcl-1. Of note, only myeloma cell lines but not reactive plasmocytoses have abnormal Mcl-1 expression, although both plasmocyte expansion entities share similar high proliferation rates (>20%). Of interest, Bcl-2 as opposed to Mcl-1, does not discriminate malignant from normal PC. This shows that the overexpression of Mcl-1 is clearly related to malignancy rather than to proliferation. It will be important to know whether the overexpression of Mcl-1 is related to an abnormal response to cytokines like Interleukin-6 or to mutations of the promoter of the Mcl-1 gene as already described in B chronic lymphocytic leukemia. Finally, level of Mcl-1 expression is related to disease severity, the highest values being correlated with the shortest event-free survival (p=.01). In conclusion, Mcl-1 which has been shown to be essential for the survival of human myeloma cells in vitro is overexpressed in vivo in MM and correlates with disease severity. Mcl-1 represents a major therapeutical target in MM.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4865-4865 ◽  
Author(s):  
Aradhana Awasthi Tiwari ◽  
Janet Ayello ◽  
Carmella van de Ven ◽  
Danielle Glassman ◽  
Anthony Sabulski ◽  
...  

Abstract Abstract 4865 Background: Patients who relapse with CD20+ B-NHL and B cell lymphoblastic leukemia (B-LL) have a dismal prognosis, often associated with chemotherapy resistance (Cairo et al. JCO, 2012,Mils/Cairo et al. BJH,2012) and often require alternative therapeutic strategies. Rituximab (RTX) in combination with FAB 96 chemotherapy is a safe, well-tolerated treatment that is associated with > 90% EFS in children with newly diagnosed and advanced mature B-Cell NHL (Cairo M.S. et al. ASCO, 2010). Resistance to RTX, however, may predispose patients with CD20+ NHL to an increase risk of relapse and or disease progression (Barth/Cairo et al. BJH, 2012; Tsai et al. Cl. Can. Res, 2012). Obinutuzumab (GA101), a novel type II glycoengineered CD20 antibody of the IgG1 isotype, mediates enhanced cell death vs RTX and has a glycoengineered Fc region that induces significantly enhanced ADCC (Mössner et al. Bld, 2010; Niederfellner G. et al. Bld, 2011; Bologna L et al. JI, 2012). Objective: To evaluate the in-vitro efficacy of GA101 compared to RTX against RTX sensitive and resistant CD20+ B-NHL and B-LL cell lines. Methods: Raji (CD20+,ATCC, Manhass, VA), U698-M (CD20+, DSMZ, Germany), Loucy cells (CD20−) (T-ALL) (ATCC, Manhass, VA) and Raji-2R and Raji-4RH (generously supplied by M. Barth, Roswell Park Cancer Institute) were cultured in RPMI with 10% FBS and incubated with GA101 and/or RTX at 100 μg/ml for 24 hrs (n=6), 48 and 72 hrs (n=5). Cell death was evaluated by staining with AnnexinV/7AAD and flow-cytometry. Loucy cells (CD20−) were used as the negative control. The caspase 3/7 activity was measured by FAM caspase 3/7 assay kit by FLICA™ methodology. RSCL, RRCL, U698-M and Loucy were incubated with GA101 and RTX treatment for 24, 48 and 72 hrs, and caspase3/7 activity was detected by FACS using 488 nm excitation and emission filter (n=3). ADCC were performed with K562-IL-15–41BBL expanded NK cells (Ayello/Cairo et al. ASH, 2010) as well as IL-2 expanded NK cells, at 20:1 effector: target ratio (E: T, n=3) using europium release assay (Perkin-Elmer). Results: GA101 induced significantly more cell death compared to RTX in B-NHL and BLL cell lines. (Table-1) GA101 vs RTX shows a significantly increase in caspase 3/7 activity in Raji 16.92±0.84% vs 11.76±0.08% compared to Raji2R 6.7±0.62% vs 2.8±0.7%, Raji4RH 5.8±0.35% vs 2.0±0.3% and U698-M 12.54±0.44% vs 9.6±0.95% compared to Loucy 3.22±0.45% vs 2.59±0.05%, respectively, at 24 hrs of treatment (p<0.0001). GA101 vs RTX also elicited a significant increase a ADCC with K562-IL15–41BBL expanded NK cells, in Raji 73.8±8.1% vs 56.81±4.6% compared to Raji-2R 38.0±2.0% vs 21.6±1.2%, Raji-4RH 40.0±1.6% vs 0.5±1.1% and U698-M 70.0±1.6% vs 45.56±0.1%, compared to Loucy 21.67±0.48% vs 15.92±0.52%, respectively (p<0.001) at day 7.The IL-2 alone expanded Hu-NK cells demonstrated a reduction of 10–20% cytotoxicity compared to K562-IL15–41BBL Hu-NK cells at day 7 against BLL, RSCL and RRCL, in-vitro. Conclusion: Obinutuzumab compared to RTX significantly enhanced cell death, caspase3/7 activity and NK mediated ADCC in sensitive and RTX resistant B-NHL and B-LL. Obinutuzumab represents a promising candidate for treating RTX sensitive and resistant CD20+ B-Cell Lymphomas and lymphoblastic leukemia. Further studies will investigate the combination of activated NK cells or chemotherapy that may enhance or synergize with the efficacy of GA101 (Obinutuzumab) both in -vitro and in-vivo in xenografted NOD/SCID mice. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2017 ◽  
Vol 130 (18) ◽  
pp. 2018-2026 ◽  
Author(s):  
Maureen C. Ryan ◽  
Maria Corinna Palanca-Wessels ◽  
Brian Schimpf ◽  
Kristine A. Gordon ◽  
Heather Kostner ◽  
...  

Key Points SGN-CD19B is broadly active in vitro against malignant B-cell lines, including double-hit and triple-hit lymphoma cell lines. SGN-CD19B shows significant antitumor activity in vivo in preclinical models of B-NHL and B-cell–derived acute lymphoblastic leukemia.


Blood ◽  
2009 ◽  
Vol 113 (19) ◽  
pp. 4656-4666 ◽  
Author(s):  
David M. Lucas ◽  
Ryan B. Edwards ◽  
Gerard Lozanski ◽  
Derek A. West ◽  
Jungook D. Shin ◽  
...  

Abstract Therapeutic options for advanced B-cell acute lymphoblastic leukemia (ALL) and chronic lymphocytic leukemia (CLL) are limited. Available treatments can also deplete T lymphocytes, leaving patients at risk of life-threatening infections. In the National Cancer Institute cell line screen, the structurally unique natural product silvestrol produces an unusual pattern of cytotoxicity that suggests activity in leukemia and selectivity for B cells. We investigated silvestrol efficacy using primary human B-leukemia cells, established B-leukemia cell lines, and animal models. In CLL cells, silvestrol LC50 (concentration lethal to 50%) is 6.9 nM at 72 hours. At this concentration, there is no difference in sensitivity of cells from patients with or without the del(17p13.1) abnormality. In isolated cells and whole blood, silvestrol is more cytotoxic toward B cells than T cells. Silvestrol causes early reduction in Mcl-1 expression due to translational inhibition with subsequent mitochondrial damage, as evidenced by reactive oxygen species generation and membrane depolarization. In vivo, silvestrol causes significant B-cell reduction in Eμ-Tcl-1 transgenic mice and significantly extends survival of 697 xenograft severe combined immunodeficient (SCID) mice without discernible toxicity. These data indicate silvestrol has efficacy against B cells in vitro and in vivo and identify translational inhibition as a potential therapeutic target in B-cell leukemias.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5123-5123 ◽  
Author(s):  
Mark Joseph Axelrod ◽  
Peter Fowles ◽  
Jeff Silverman ◽  
Astrid Clarke ◽  
Jennifer Tang ◽  
...  

Abstract Background Entospletinib (GS-9973) selectively inhibits spleen tyrosine kinase (SYK), a critical signaling component of the BCR pathway that is expressed primarily in cells of hematopoietic lineage including normal and malignant B-lymphocytes. Entospletinib is currently in phase II clinical trials, where it has demonstrated both a high degree of safety as well as efficacy against chronic lymphocytic leukemia (Sharman, J., et al. Blood, 2015) and other B cell malignancies. Despite these successes, new therapeutic options, including combinations with standard of care agents, are needed in order to achieve the goal of curing disease through finite treatment. We show here that the combination of entospletinib and vincristine causes synergistic apoptosis in vitro in a broad panel of cell lines derived from hematological cancers including diffuse large B cell lymphoma (DLBCL), acute lymphocytic leukemia, follicular lymphom), multiple myeloma, and acute myelogenous leukemia. We also evaluated and compared the in vivo efficacy of entospletinib and vincristine as singe agents and in combination in a DLBCL tumor xenograft model using the SU-DHL-10 cell line. Methods In vitro growth inhibition of a panel of malignant hematological cell lines was assessed using CellTiter-Glo™ Assay (Promega) after 72h incubation with entospletinib or vincristine alone or in combination. Synergy was evaluated using the Bliss model of independence (Meletiadis, J., et al., Med Mycol, 2005). In vivo, SU-DHL-10 cells (5 x 106 cells) were implanted subcutaneously in the axilla in male SCID beige mice. All mice were sorted into study groups on Day 16 such that each group's mean tumor volume fell within 10% of the overall mean (197mm3). Dosing was initiated on Day 16 and animals were dosed for 17 days. Plasma concentrations of entospletinib and vincristine were assessed on Day 19, and the entospletinib 75 mg/kg dose was lowered on Day 22 to 50 mg/kg to approximate the human achievable SYK target coverage of EC80. Efficacy and tolerability were evaluated by tumor measurements and body weight monitored three times weekly. Tumor burden data were analyzed by the application of a two-way analysis of variance (ANOVA), with post-hoc analysis. Results In vitro combinations of entospletinib with low concentrations of vincristine resulted in marked inhibition of cell proliferation and induction of apoptosis in a broad panel of 19 tumor cell lines representing major B cell malignancies including DLBCL. The combination of entospletinib with vincristine had a profound inhibitory effect on proliferation in all subtypes of DLBCL. Entospletinib was evaluated at a concentration equivalent to the Cminof the clinical dose and vincristine was used at concentrations (≤ 10 nM) that had little to no significant single agent effect in these cell lines. In vivo in a SU-DHL-10 xenograft model, entospletinib dosed alone at 25 or 75/50 mg/kg significantly inhibited tumor growth, causing 39% and 20% tumor growth inhibition (TGI), respectively, compared to the vehicle-treated control group. Vincristine administered at either 0.15 and 0.5 mg/kg Q7D x 3 also resulted in significant TGI (42% and 85% TGI, respectively). The addition of entospletinib (75/50 mg/kg) to 0.5 mg/kg or 0.15 mg/kg vincristine resulted in a significant increase in TGI from 85% to 96% (p= 0.001) and 42% to 71% (p< 0.0001), respectively. The addition of entospletinib (25 mg/kg) to vincristine did not significantly increase the tumor growth inhibition. While the groups receiving either entospletinib or vincristine as single agents had no complete or partial tumor regression, 50% of the mice receiving the combination of 75/50 mg/kg entospletinib with 0.5 mg/kg vincristine had partial responses, 8% had complete regression and 8% were tumor free at the end of study (Figure 1). Conclusion Entospletinib and vincristine demonstrated efficacy and tolerability both alone and in combination in the SU-DHL-10 DLBCL cell line xenograft model in SCID beige mice. Vincristine combinations with entospletinib showed significantly greater efficacy than vincristine alone. These data support the further clinical development of entospletinib in combination with vincristine for the treatment of DLBCL. a ENTO: PO: Q12H x 2 (Day 16-32) b VCR: IV: Q7D x 3 (Days 18, 25, 32) Figure 1. Tumor Regressions in an Entospletinib/ Vincristine Treated Murine DLBCL Xenograft Figure 1. Tumor Regressions in an Entospletinib/ Vincristine Treated Murine DLBCL Xenograft Disclosures Axelrod: Gilead Sciences: Employment, Equity Ownership. Fowles:Gilead Sciences: Employment, Equity Ownership. Silverman:Gilead Sciences: Employment, Equity Ownership. Clarke:Gilead Sciences: Employment, Equity Ownership. Tang:Gilead Sciences: Employment, Equity Ownership. Rousseau:Gilead Sciences: Employment, Equity Ownership. Webb:Gilead Sciences: Employment, Equity Ownership. Di Paolo:Gilead Sciences: Employment, Equity Ownership.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 615-615
Author(s):  
Yuxuan Liu ◽  
Lucille Stuani ◽  
Dorra Jedoui ◽  
Milton Merchant ◽  
Astraea Jager ◽  
...  

Abstract Despite improvements in overall survival for children with B-cell progenitor acute lymphoblastic leukemia (BCP-ALL), it remains the second-leading cause of cancer related death in children with approximately 200 deaths per year in the U.S. Thus, there remains a critical need for a definitive cure to prevent relapse for patients with BCP ALL. The accumulation of BCP ALL blasts results from the disruption of normal developmental checkpoints. One of these checkpoints, as pro-B cells transition to become pre-B cells, involves surface expression of the precursor-B-cell receptor (pre-BCR). Prior work has categorized BCP ALL into pre-BCR positive and pre-BCR negative subtypes based on the protein expression of Ig light chain and active signaling of SRC family kinases, SYK, BTK. Combining single cell analysis and machine learning, we previously identified pre-B cells with activation of pre-BCR signaling, namely CREB, 4EBP1, rpS6 and SYK, that are present at diagnosis and highly predictive of relapse. We call these relapse predictive cells. Relapse predictive cells were enriched in relapse samples, demonstrating their persistence from diagnosis to relapse and making them an actionable target to prevent relapse altogether. To better understand relapse predictive cells, we enriched pre-B cells from patients with known relapse status and performed whole transcriptome sequencing. Relapse predictive cells demonstrated significant upregulation of genes in the oxidative phosphorylation (OXPHOS), glycolysis, and reactive oxygen species (ROS) pathways compared to pre-B-like leukemia cells from patients who will not go on to relapse. Analysis of public genome-wide CRISPR screen datasets in 2 pre-BCR+ and 4 pre-BCR- cell lines found 69 essential genes uniquely present in pre-BCR+ cell lines, related to mitochondria translation, OXPHOS and TCA cycle pathway. We performed CRISPR knock down of proximal pre-BCR related tyrosine kinase SYK in pre-BCR+ (Nalm6, Kasumi-2) and pre-BCR- (697, REH, SUPB15) cell lines to understand how activated pre-BCR impacts cellular metabolism in pre-BCR+ and pre-BCR- cells. CyTOF analysis of pre-BCR signaling demonstrated effective inhibition of downstream pre-BCR pathway members in the KD cells (pSYK, pBLNK, pBTK). RNA sequencing demonstrated upregulation of mitochondrial translation and OXPHOS pathways with downregulation of hypoxia pathways in pre-BCR+ but not pre-BCR- SYK KD cells. Functional extracellular flux experiments by Seahorse confirmed pre-BCR+ SYK KD cells to have higher basal oxygen consumption rate (OCR) and lower extracellular acidification rate (ECAR) compared to wild-type pre-BCR+ cells, indicating a switch from highly glycolytic to aerobic metabolism. To determine the interplay between pre-BCR signaling and cellular metabolism at the single cell level, we performed CYTOF with a panel examining pre-BCR pathway members, developmental phenotype and metabolism in these cell lines as well as matched diagnosis-relapse patient-derived xenografts. These results indicate, in line with the RNA sequencing and Seahorse data, that inhibiting pre-BCR signaling is accompanied by inhibition of glycolysis with lower protein expression of glycolytic related enzymes HIF1A, GLUT1, PFKFB4, GAPDH, ENO1 and LDHA. Further, we observed in cells completely deficient in the ability to initiate pre-BCR signal (SYK knock out), activated p4EBP1 indicating signaling feedback from the PI3K-AKT pathway and a metabolic adaption indicating utilization of energy sources other than glucose in cells surviving SYK loss. Finally, to determine the impact of loss of pre-BCR signaling on proliferation, in vitro competition assays demonstrated SYK KD cells to be less proliferative in all the cell lines except pre-BCR- cell line 697. In vivo, SYK KO demonstrated significantly slower engraftment (median %hCD45: 84% vs 54%, P=0.009) in NSG mice and significantly longer survival time than the mice xenografted with wild-type cells (median survival 28 vs 39 days, P=0.0004). Together, our data indicate that individual BCP ALL cells with active pre-BCR signaling are associated with relapse and that these cells have a unique metabolic state that relies on active glycolysis and metabolic flexibility supporting proliferation in vitro as well as engraftment and aggressivity in vivo. Further metabolomics experiments and characterization of primary patient samples are underway. Disclosures Mullighan: Pfizer: Research Funding; Illumina: Membership on an entity's Board of Directors or advisory committees; AbbVie: Research Funding; Amgen: Current equity holder in publicly-traded company. Davis: Novartis Pharmaceuticals: Honoraria; Jazz Pharmaceuticals: Research Funding.


Blood ◽  
2007 ◽  
Vol 110 (2) ◽  
pp. 616-623 ◽  
Author(s):  
Andrew G. Polson ◽  
Shang-Fan Yu ◽  
Kristi Elkins ◽  
Bing Zheng ◽  
Suzanna Clark ◽  
...  

Abstract Targeting cytotoxic drugs to cancer cells using antibody–drug conjugates (ADCs), particularly those with stable linkers between the drug and the antibody, could be an effective cancer treatment with low toxicity. However, for stable-linker ADCs to be effective, they must be internalized and degraded, limiting potential targets to surface antigens that are trafficked to lysosomes. CD79a and CD79b comprise the hetrodimeric signaling component of the B-cell receptor, and are attractive targets for the use of ADCs because they are B-cell–specific, expressed in non-Hodgkin lymphomas (NHL), and are trafficked to a lysosomal-like compartment as part of antigen presentation. We show here that the stable-linker ADCs anti-CD79b-MCC-DM1 and anti-CD79b-MC-MMAF are capable of target-dependent killing of nonHodgkin lymphoma cell lines in vitro. Further, these 2 ADCs are equally effective as low doses in xenograft models of follicular, mantle cell, and Burkitt lymphomas, even though several of these cell lines express relatively low levels of CD79b in vivo. In addition, we demonstrate that anti-CD79b ADCs were more effective than anti-CD79a ADCs and that, as hypothesized, anti-CD79b antibodies downregulated surface B-cell receptor and were trafficked to the lysosomal-like major histocompatibility complex class II–positive compartment MIIC. These results suggest that anti-CD79b-MCC-DM1 and anti-CD79b-MC-MMAF are promising therapeutics for the treatment of NHL.


Sign in / Sign up

Export Citation Format

Share Document