In Vitro Drug Sensitivity as a Predicitive Tool of Early Clinical Response in Childhood Acute Lymphoblastic Leukemia.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4232-4232
Author(s):  
Faith C. Galderisi ◽  
Linda C. Stork ◽  
Ju Li ◽  
Motomi Mori ◽  
Solange Mongoue-Tchokote ◽  
...  

Abstract Background: Residual disease or rapidity of response to induction therapy is among the most powerful predictors of outcome in pediatric Acute Lymphoblastic Leukemia (ALL). Various methods to determine response during induction have been in use in clinical investigation. We hypothesize that drug sensitivity at the cellular level predicts rapidity of response to induction therapy in ALL. We recently developed a high resolution flow cytometry based cytotoxicity assay for in vitro cellular drug response profiling for pediatric ALL. This method has a turnaround time of 48 hours and the ability to measure drug effect specific to leukemic cells regardless of number of admixed normal cells. We report preliminary data that correlate results of this drug sensitivity assay with rapidity of response to induction therapy among patients with ALL. Methods: We performed in vitro tests, applying a multiparameter flow cytometric drug cytotoxicity assay, on bone marrow (BM) samples of 23 patients with newly diagnosed standard (n = 10), high (n = 11), and very high (n = 2) risk ALL, as defined by the Children’s Oncology Group (COG) and NCI risk classification. Fourteen patients were rapid early responders (RER) and 9 were slow early responders (SER) by COG criteria at day 15 and 29. Cryopreserved cells from BM samples were thawed and determined to have adequate viability by trypan blue dye exclusion. Drugs were tested at three different concentrations, each in triplicate. Concentrations tested were based on an empirically derived cut-off concentration (EDCC) adopted from published in vitro studies, chosen to produce a large scatter of survival index values among samples. Leukemic blasts were specifically identified by surface markers, CD 45, CD 19 and CD 10 or CD 3, while cytotoxicity was measured with Annexin V based apoptosis. Leukemic cell survival index (LCSI = Average Replicate /Average Control x 100) was determined at 48 hours after in vitro exposure to individual standard induction agents for pediatric ALL: vincristine, asparaginase, dexamethasone, prednisone and daunomycin. LCSI differences between RER and SER were compared using Wilcoxon rank sum test for each drug and concentration. The mixed effects model was used to evaluate the overall difference of LCSI between RER and SER over the three concentrations (referred to as “averaged concentrations”). Results: For dexamethasone, a significantly lower LCSI was seen in the RER compared with the SER cohort at individual and averaged concentrations: RER mean LCSI = 40.2%, SER mean LCSI = 70.1% (p = 0.01, mixed effects model). A trend toward a lower mean LCSI in the RER compared with the SER group was noted for asparaginase and vincristine at individual and averaged concentrations (p < 0.1). Mean LCSI was not different between the RER and SER groups for daunomycin and prednisone at individual or averaged concentrations. Conclusions: This in vitro drug sensitivity assay provides a response profile for dexamethasone that correlates with in vivo response to induction therapy. Research is ongoing with more patient samples in order to achieve a greater statistical power to detect a smaller difference for all drugs tested. Further research will also correlate clinical response with LCSI using drug combinations in vitro. Results of these studies will determine the potential value of this assay for early risk stratification and modification of therapy in de novo or relapsed ALL.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 860-860
Author(s):  
Inge M. Appel ◽  
Karin M. Kazemier ◽  
Anjo J.P. Veerman ◽  
Elisabeth van Wering ◽  
Monique L. Den Boer ◽  
...  

Abstract L-Asparaginase is an effective drug for treatment of children with acute lymphoblastic leukemia. The effectiveness is generally thought to result from a rapid depletion of asparagine in serum and cells. Several studies have shown that in vitro resistance to this drug is an independent prognostic factor in ALL. We investigated the clinical response of one in vivo dose of 1000 IU/m2 PEG-Asparaginase and its pharmacokinetic and pharmacodynamic effects in children with newly diagnosed ALL before the start of combination chemotherapy. 57 children (36M / 21F) were enrolled in the study: 2 pro B-ALL, 38 common/ pre B-ALL and 17 T-ALL. Genotyping of precursor B-ALL revealed 11 hyperdiploid, 8 TELAML1 positive, 2 BCRABL positive, no MLL rearrangement, 8 normal, 11 others. The clinical response to PEG-Asparaginase on day 0 (5 days after the PEG-Asparaginase infusion) was defined as good when the number of leukemic cells of peripheral blood was < 1 × 109/L, as intermediate when leukemic cells were 1-10 × 109/L, and as poor when leukemic cells were > 10 × 109/L. The in vivo window response was significantly related to immunophenotype and genotype: 26/38 common / pre B-ALL cases, especially those with hyperdiploidy and TELAML1 rearrangement, demonstrated a good clinical response compared to 8/17 T-ALL (p=0.01). Both BCRABL positive ALL cases showed a poor response (p=0.04). A poor in vivo clinical window response was related to in vitro resistance to L-Asparaginase (p=0.02) and both in vitro as well as in vivo response were prognostic factors for long-term event-free survival (Hazard ratio 6.4; p=0.004, and Hazard ratio 3.7; p=0.01, respectively). The L-Asparaginase activity in the serum was >100 IU/L for at least 15 days. The asparagine levels remained below the detection limit of 0.2 mM for at least 26 days with a concomitant rise in serum aspartate and glutamate. These findings confirm that PEG-Asparaginase will yield its pharmacodynamic effects for 2-4 weeks. After administration of one in vivo dose of 1000 IU/m2 PEG-Asparaginase no changes in apoptotic parameters or changes in intracellular levels of twenty amino acids in leukemic cells could be measured, in contradiction to the changes found after in vitro exposure. This may be explained by the rapid removal of apoptotic cells from the circulation in vivo. Otherwise it is possible that in vivo mesenchymal cells from the bone marrow supply leukemic blasts with asparagine in response to treatment with L-Asparaginase. Conclusion: The clinical response to one dose of 1000 IU/m2 PEG-Asparaginase intravenously is related to phenotype and genotype and predicts outcome. These results suggest that children with ALL with a poor clinical response to PEG-Asparaginase might benefit from a more intensive antileukemic therapy.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2429-2429
Author(s):  
Jaira Ferreira de Vasconcellos ◽  
Nilson Ivo Tonin Zanchin ◽  
Angelo A. Cardoso ◽  
Silvia Regina Brandalise ◽  
José Andrés Yunes

Abstract The interactions of Acute Lymphoblastic Leukemia (ALL) blasts with bone marrow (BM) stromal cells have a positive impact on leukemia cell survival and resistance to chemotherapy. ALL stimulates BM stromal cells, which reciprocally promotes leukemia cell survival. To identify molecules critically involved in leukemia–microenvironment crosstalk, we performed gene expression profiling analyses of primary BM endothelial cells (BMEC) and BM mesenchymal stem cells (BMMSC) following stimulation by primary ALL cells. Leukemia stimulation of BM stromal cells upregulates the expression of several inflammatory chemokines, including CCL2 and IL-8/CXCL8. Secretion of these molecules was confirmed by ELISA assays of in vitro co-culture experiments and in BM plasma samples from pediatric ALL patients. Most primary ALL samples were found to express mRNA for CCR2 and CXCR1/CXCR2, which are the cognate receptors for CCL2 and IL-8, respectively. Primary ALL cells expressing at least one myeloid marker (CD13, CD15 or CD33) exhibited increased mRNA expression of CCR2 (p = 0.02). Leukemia cells from most patients express CCL2 and IL-8 chemokines (ELISA test) but at lower levels than that of BMEC and BMMSC. In vitro functional studies revealed that the proliferation, survival and migration of primary ALL cells co-cultured with BM stromal cells were not affected by addition of CCL2, IL-8 or of neutralizing antibodies to these chemokines. On the other hand, both chemokines were found to enhance BMEC and BMMSC survival in serum-free medium and to increase their proliferation in serum-starved conditions. Interestingly, CCL2 and IL-8 affected endothelial morphogenesis as shown in Matrigel assays. Since CCL2 and IL-8 have suppressive effects in normal hematopoiesis but do not seem to affect primary ALL cells, it is possible that these chemokines may contribute to the establishment of survival/proliferative selective advantage for ALL cells in the leukemic BM microenvironment. In addition, CCL2 and IL-8 seems indirectly to contribute to ALL cell survival by stimulating the supporting BM stromal cells. Finally, preliminary results showed that standard risk pediatric ALL patients with BM plasma levels below 577pg/ml have better survival rates than those with higher CCL2 levels (p = 0.08). In conclusion, this work suggests a significant role for the chemokines CCL2 and IL-8 in the leukemia/microenvironment crosstalk in human ALL, and suggests that these molecules may represent valuable targets for therapeutic intervention in this cancer. Supported by: CNPq, FAPESP.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2038-2038
Author(s):  
Irene Homminga ◽  
Michel C. Zwaan ◽  
Amel Seghouani ◽  
Chantal Y. Manz ◽  
Shanta Bantia ◽  
...  

Abstract Abstract 2038 Poster Board II-15 Purine nucleoside phosphorylase (PNP) deficiency in humans is associated with elevated deoxyguanosine (dGuo) plasma levels. DGuo is converted into dGTP inducing apoptosis in T-cells and this provides the rationale for the development of deoxyguanosine analogues as a potential treatment option for T-cell malignancies. Forodesine (BCX-1777; BioCryst-Mundipharma) is an efficient blocker of PNP activity, thereby boosting the conversion of dGuo into dGTP and raising intracellular dGTP levels. AraG (9-b-D-arabinofuranosyl-guanine) is a compound that is resistant to PNP-mediated degradation that is efficiently converted into AraGTP. AraGTP becomes incorporated in the DNA, blocking DNA synthesis and promoting apoptosis. In a phase II clinical trial, the AraG prodrug Nelarabine enforced a complete remission rate of 55% for pediatric T-ALL patients at 1st relapse. (Berg, JCO 2005). Clinical data of Forodesine treatment in pediatric ALL patients are not yet available. As tested on primary pediatric acute lymphoblastic leukemia (ALL) patient samples (4 T-ALL, 2 BCP-ALL), 1μM of Forodesine is sufficient to completely block PNP and abolish rapid dGuo degradation resulting in a median 7.9 (range 0.5-378) fold raise of intracellular dGTP levels. Accumulation of dGTP is comparable for T-ALL (n=31) and BCP-ALL (n=11) patient samples. This reflects equal intrinsic ability of salvage nucleotide synthesis for both T-ALL and BCP-ALL cells. Cytotoxic effect of Forodesine was tested on primary leukemia cells from newly diagnosed pediatric ALL patients in-vitro by incubating cells with Forodesine (1μM) in the presence of increasing concentrations of dGuo (0.001-50μM). In accordance with selective T-cell toxicity, T-ALL cells were more sensitive to Forodesine/dGuo treatment (median T-ALL LC50 value: 1.1μM dGuo/1μM Forodesine, n=27, p=0.001) compared to BCP-ALL cells, which had a median LC50 value of 8.8μM dGuo/1μM Forodesine (n=30). All patients that responded demonstrated dGTP accumulation (1.5-222.1 fold), although the raise of dGTP levels did not correlate with Forodesine/dGuo toxicity (r2= 0.10, p=0.22). Studying in-vitro responsiveness to AraG, T-ALL cells were more sensitive compared to BCP-ALL cells (p=0.0002) with a median AraG LC50 value of 20.5μM for T-ALL samples (n=24) versus 48.3μM for BCP-ALL samples (n=20). Remarkably, TELAML1 positive BCP-ALL cases were insensitive to AraG treatment (median LC50 value >50μM, n=9). No correlation was identified between in-vitro Forodesine/dGuo and AraG cytotoxicities (r2=0.05, p=0.29). Most patient samples that displayed AraG resistance still responded to Forodesine/dGuo treatment. This may be explained by the fact that the uptake of both drugs may be facilitated by different transporters. Using RQ-PCR we could demonstrate that AraG toxicity, in contrast to Forodesine, was significantly associated with ENT1 (equilibrative nucleoside transporter 1) expression levels (p=0.008), which was previously identified as strong predictor for AraC cytotoxicity in pediatric ALL (Stam RW. et al., Blood 2003). AraG cytotoxicity strongly correlated with AraC cytotoxicity (r2=0.71, p<0.0001). We found no significant correlation between Forodesine sensitivity and the expression levels of other nucleoside transporters (CNT1, CNT2, CNT3, ENT2), kinases (dCK, dGK), nucleotidases (NT5C1A, NT5C2, PNI) or other enzymes that are involved in dGuo metabolism (PNP, RRM1, RRM2). In conclusion, T-ALL cells are more sensitive to Forodesine/dGuo treatment in-vitro than BCP-ALL cells that have nearly 8 fold higher dGuo LC50 values. Resistance to AraG treatment does not preclude responsiveness to Forodesine treatment and vice versa, indicating that Forodesine and AraG rely on different cellular mechanisms for cytotoxicity, possibly involving differences in dependence on the nucleoside transporter ENT1. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4448-4448
Author(s):  
Agapi Parcharidou ◽  
Constantina Sambani ◽  
Christina Stavropoulou ◽  
George Paterakis ◽  
Chrysoula Belesi ◽  
...  

Abstract The rate of success in the treatment of pediatric acute lymphoblastic leukemia (ALL) has been increased steadily during the last decades. The five years’ event free survival rate is nearly 80% for children with ALL. Attempts to boost cure rates further with the use of hematopoietic stem cell transplantation have improved for some but not all, subtypes of ALL. The best hope for continued progress lies in a better understanding of the pathogenesis, the basis of resistance to chemotherapy, and finally better organized clinical trials. The present study has been based on organizing and exploring new clinical correlations among clinical data obtained from molecular genetic profile, in vitro chemosensitivity and genetic polymorphisms of detoxifying enzymes. During the last 3 years 43 newly diagnosed ALL patients, 27 boys and 16 girls, aged 23 months to 14 years old were included in this study. Bone marrow and/or peripheral blood samples were studied for karyotyping aberrations. The presence of the specific translocations t(12;21), t(9;22), t(4;11) and t(1;19) was investigated using RT-PCR and FISH. Furthermore, FISH was also used for the detection 9p deletions and MLL rearrangements. Immunophenotype of blasts and DNA index were studied by flow cytometry. In vitro chemosensitivity studies were performed by the MTT assay (ELISA).The GSTT1 genetic polymorphism (null genotype) was detected by multiplex PCR and NQ1 genetic polymorphism was detected by PCR -RFLPs. A cytogenetic/molecular result was achieved in 39/43 patients. Structural or numerical aberrations were detected in 7/39 patients. 9/39 patients were positive for the TEL/AML1 (23%) and 3/39 for the BCR/ABL fusion genes. One patient showed only one MLL allele, no patient had MLL rearrangement and 5/19 patients presented 9p deletion. A null GSTT1 genotype was observed in 5/43children (11,62%) and 14/43 patients were heterozygotes for NQ1(32,5%). 8/36 patients presented in vitro chemoresistance and 8/43 patients had DNA index &gt;1 (18,6%).In our series of patients the frequency of t(12;21) does not seem to differ significantly from the literature data. The patients who showed chemoresistance had also unfavorable prognostic markers according to cytogenetic/molecular diagnostic data or clinical characteristics. The number of the patients is low to correlate detoxifying enzymes to toxicity or response during treatment. The multiparametric diagnostic approaches in pediatric ALL seem to be of great importance in diagnosis and tailored therapy leading to high rates of cure. Our center’s effort is the optimal characterization of the pediatric ALL profile in Greece by the use of multiparametric diagnostic methods targeting a better outcome.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Qian Jiang ◽  
Xiaojing Lu ◽  
Pengli Huang ◽  
Chao Gao ◽  
Xiaoxi Zhao ◽  
...  

MicroRNAs (miRNAs) expression profiles were screened in plasma samples from pediatric patients with acute lymphoblastic leukemia (ALL) and healthy controls, using qRT-PCR-based TaqMan low-density miRNA arrays. MiR-652-3p (a circulating miRNA) was downregulated in new diagnosis (ND) patients compared with healthy controls. The levels of miR652-3p were restored in complete remission (CR) but were downregulated again in disease relapse (RE). The expression pattern of miR-652-3p was validated in bone marrow (BM) samples from other pediatric ALL patients. MiR-652-3p was significantly upregulated in BM when the patients (n=86) achieved CR, as compared with the matched ND samples (p<0.001). Moreover, the miR-652-3p levels in BM decreased again in two patients at RE. In addition, the lymphoblastic leukemia cell lines Reh and RS4:11 were found to have lower levels of miR-625-3p than the normal B-cell line. Overexpression of miR-652-3p using agomir increased the sensitivity to vincristine and cytarabine (all p<0.05) and promoted apoptosis (both p<0.05) in Reh and RS4:11 cells. In conclusion, the results suggested that a low level of miR-652-3p might be involved in the pathogenesis of pediatric ALL. Overexpression of miR-652-3p might suppress lymphoblastic leukemia cells, promoting apoptosis and increasing sensitivity to chemotherapeutic drugs.


Blood ◽  
1997 ◽  
Vol 89 (8) ◽  
pp. 2959-2965 ◽  
Author(s):  
Teruaki Hongo ◽  
Shuhei Yajima ◽  
Minoru Sakurai ◽  
Yasuo Horikoshi ◽  
Ryoji Hanada

Abstract It is vital to develop effective therapy for children with acute lymphoblastic leukemia (ALL), in whom no remission occurs or who suffer relapse with current protocols. Cellular drug resistance is thought to be an important cause of induction failure and relapse. We performed in vitro tests of bone marrow samples in 196 children with newly diagnosed ALL with a 4-day culture and a methyl-thiazol-tetrazolium assay. We tested 16 drugs and calculated the 70% lethal dose (LD70) for 14 drugs and the leukemic cell survival (LCS) rate for dexamethasone and prednisolone. For each single drug, patients were classified into two groups, sensitive or resistant, by median concentration of LD70 or LCS. When patients were classified into three groups by sensitivity to four drugs of DPAV (dexamethasone, prednisolone, L-asparaginase, and vincristine), 3-year event-free survival (EFS; 95% confidence intervals) of the super sensitive group (SS; sensitive to all 4 drugs) was 0.833 (0.690 to 0.976), that of the intermediate sensitive group (IS; sensitive to 2 or 3 drugs) was 0.735 (0.609 to 0.863), and that of the relatively resistant group (RR; sensitive to no drugs or to 1 drug) was 0.541 (0.411 to 0.670; P = .0008). We then investigated the relationship between the above four-drug sensitivity and the time of relapse. The SS and IS patients tended to maintain continuous complete remission, and RR patients tended to undergo induction failure and early and late relapse (P = .004). Initial white blood cell count, immunologic classification, and age were also predictive factors, but the patient numbers showed no statistical correlation between these factors and the four-drug sensitivity groups (SS, IS, and RR). When we took three groups SS/IS/RR and investigated the EFS for various clinical groups, DPAV sensitivity strongly influenced EFS in the standard-risk ALL (P = .016). In vitro drug sensitivity testing provides additional prognostic information about childhood ALL, and early detection of drug resistance at the time chemotherapy commences may provide a successful strategy for individualizing treatment, as the results indicate de novo resistance to front-line drugs and suggest alternative, second-line drugs.


2021 ◽  
Vol 22 (13) ◽  
pp. 6653
Author(s):  
Axel Karow ◽  
Monika Haubitz ◽  
Elisabeth Oppliger Leibundgut ◽  
Ingrid Helsen ◽  
Nicole Preising ◽  
...  

Increased cell proliferation is a hallmark of acute lymphoblastic leukemia (ALL), and genetic alterations driving clonal proliferation have been identified as prognostic factors. To evaluate replicative history and its potential prognostic value, we determined telomere length (TL) in lymphoblasts, B-, and T-lymphocytes, and measured telomerase activity (TA) in leukocytes of patients with ALL. In addition, we evaluated the potential to suppress the in vitro growth of B-ALL cells by the telomerase inhibitor imetelstat. We found a significantly lower TL in lymphoblasts (4.3 kb in pediatric and 2.3 kb in adult patients with ALL) compared to B- and T-lymphocytes (8.0 kb and 8.2 kb in pediatric, and 6.4 kb and 5.5 kb in adult patients with ALL). TA in leukocytes was 3.2 TA/C for pediatric and 0.7 TA/C for adult patients. Notably, patients with high-risk pediatric ALL had a significantly higher TA of 6.6 TA/C compared to non-high-risk patients with 2.2 TA/C. The inhibition of telomerase with imetelstat ex vivo led to significant dose-dependent apoptosis of B-ALL cells. These results suggest that TL reflects clonal expansion and indicate that elevated TA correlates with high-risk pediatric ALL. In addition, telomerase inhibition induces apoptosis of B-ALL cells cultured in vitro. TL and TA might complement established markers for the identification of patients with high-risk ALL. Moreover, TA seems to be an effective therapeutic target; hence, telomerase inhibitors, such as imetelstat, may augment standard ALL treatment.


Sign in / Sign up

Export Citation Format

Share Document