Multiple Myeloma Cell-Osteoblast Interaction Results in Impaired Bone Formation.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4764-4764
Author(s):  
Sonia Vallet ◽  
Teru Hideshima ◽  
Samantha Pozzi ◽  
Nileshwari Vaghela ◽  
Gaurav Gharti-Chhetri ◽  
...  

Abstract Osteolytic bone disease is a common complication of multiple myeloma (MM) resulting from uncoupled bone remodeling due to enhanced bone resorption and reduced bone formation. Bone formation is a complex process requiring functionally mature osteoblasts (OB). Mesenchymal stem cells differentiate into mature OB and following an active period of bone matrix synthesis lasting 1–2 weeks, they finally differentiate into inactive bone-lining cells or osteocytes. Although several studies have demonstrated that MM cells inhibit osteoblastogenesis via secretion of DKK1, a Wnt-pathway antagonist, the functional sequelae of interaction of mature OB with MM cells remains to be elucidated. Here, we studied the morphological and functional consequences induced by MM cells interacting with mature OB. Mature OB were generated from MM patients’ bone marrow mononuclear cells by cultivation in differentiation media consisting of αMEM with 20% fetal bovine serum, β-glycerol phosphate (2.16 mg/ml), ascorbic acid (0.05 mg/ml) and dexamethasone (10 nM). These mature OBs were alkaline phosphatase (ALP) positive and secreted and mineralized bone matrix, as demonstrated by Alizarin Red staining. MM cell lines INA6 and MM1.S were co-cultured with mature OB at a 5:1 ratio for 2, 4 and 7 days in OB differentiation media and bone marrow stromal cells (BMSC) were used as negative controls. After 4 days of co-culture, we observed phenotypic changes featured by acquisition of a spindle-like shape with reduced ALP staining in OB. In contrast, OB alone were intensely ALP-positive and cuboidal-shaped cells. Co-culture with INA-6 MM cells induced a reduction in ALP enzymatic activity in a time-dependent manner by 28% (± 10%) at day 2 and 72% (± 5%) at day 4 (p<0.05), respectively, whereas co-culture with MM1.S induced a 38% (± 5%) reduction after 4 days. Other MM cell lines induced similar effects. We then verified OB activity by assessing osteocalcin release and matrix mineralization. Importantly, osteocalcin secretion was completely abrogated in the presence of INA6, while MM1.S reduced it by 50% as early as day 2 (p<0.05). Moreover, Alizarin red staining demonstrated an impairment of matrix mineralization after 7 days of co-culture. Reduced OB function in the presence of MM cells was further confirmed by downregulation of Type-I collagen expression in OB. These effects were associated with only modest (10%) OB apoptosis as demonstrated by APO2.7 staining after 4 days of co-culture compared to OB alone. These phenotypic and functional sequelae on OB were not induced by co-culture supernatants, suggesting the requirement for direct MM cell/OB contact. These results therefore suggest that MM cell/mature OB interactions result in inhibition of bone formation by inactivation of mature OB. Ongoing studies are characterizing the mechanism by which MM cells induce OB inactivation and whether these changes affect the OC compartment. These studies of MM cell-OB interactions will form the basis for evaluation of novel agents with anabolic effects on the bone in the future.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2739-2739 ◽  
Author(s):  
Samantha Pozzi ◽  
Hua Yan ◽  
Sonia Vallet ◽  
Nileshwari Vaghela ◽  
Mariateresa Fulciniti ◽  
...  

Abstract Treatment of bone disease in multiple myeloma (MM) has largely focussed on the osteoclast axis while the osteoblast axis has been underexploited. Dkk1, an inhibitor of the wingless int (wnt) pathway, is important in osteoblastogenesis. Increased expression of Dkk1 in a subset of MM patients and its association with lytic bone disease opens up the potential of targeting the osteoblast axis. The aim of this study was to test the effect of a Dkk-1 neutralizing chimeric antibody (Mab B3) on osteoblasts (OB), osteoclasts (OC) and MM cells in the context of the bone microenvironment. First, we tested the expression of Dkk1 in plasma and bone marrow of 16 MM patients and 10 MM cell lines. Dkk1 levels were &gt;18 ng/mL in 2 out of 16 patients; levels were comparable in blood and bone marrow plasma. In contrast, very little Dkk1 (2–9 ng/ml) was produced by bone marrow stromal cells (BMSC). One out of 10 MM cell lines (INA-6) expressed low concentrations of Dkk1 in the supernatant. Next, we tested the effect of Mab B3 on MM cell lines, in the presence or absence of BMSC, and on OB and OC from MM patient derived bone marrow. The effects on OC were evaluated by TRAP staining and pit formation. Effects on OB were assayed by alkaline phosphatase staining and alizarin red assays for calcium deposition. Mab B3 treatment did not demonstrate direct cytotoxic effects on MM cell lines negative for Dkk1. Mab B3, however, enhanced OB differentiation and calcium deposition in a dose dependent manner and inhibited OC differentiation and function, as evidenced by a decrease in number of multinucleated TRAP+ cells and a decrease in pit formation. Ongoing studies are addressing the effect of Mab B3 on MM cells in the context of OC and OB. Mab B3 is also undergoing in vivo testing in a SCID-hu model bearing INA-6 MM cells. These studies and the underlying mechanism of action of Mab B3 will be presented. Our preliminary data suggests that Mab B3 has anabolic bone effects; a corresponding human monoclonal antibody may be useful for the treatment of MM related bone disease. Future studies will evaluate Mab B3 in combination with catabolic agents such as bisphosphonates with the goal of restoring normal bone homeostatsis.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1885 ◽  
Author(s):  
Basem M. Abdallah ◽  
Enas M. Ali

Butein is a phytochemical that belongs to the chalcone family of flavonoids and has antitumor, anti-inflammatory, and anti-osteoclastic bone resorption activities. This study aims to investigate the effects of butein on the differentiation potential of mouse primary bone marrow-derived mesenchymal stem cells (mBMSCs) into osteoblast and adipocyte lineages. Primary cultures of mBMSCs are treated with different doses of butein during its differentiation. Osteoblast differentiation is assessed by alkaline phosphatase (ALP) activity quantification and Alizarin red staining for matrix mineralization, while adipogenesis is assessed by quantification of lipid accumulation using Oil Red O staining. Osteoblastic and adipocytic gene expression markers are determined by quantitative real-time PCR (qPCR). Western blot analysis is used to study the activation of extracellular signal-regulated kinase (ERK1/2). Interestingly, butein promotes the lineage commitment of mBMSCs into osteoblasts, while suppressing their differentiation into adipocytes in a dose-dependent manner. A similar effect of butein is confirmed in human (h) primary BMSCs. Occurring at the molecular level, butein significantly upregulates the mRNA expression of osteoblast-related genes, while downregulating the expression of adipocyte-related genes. The mechanism of butein-induced osteogenesis is found to be mediated by activating the ERK1/2 signaling pathway. To conclude, we identify butein as a novel nutraceutical compound with an osteo-anabolic activity to promote the lineage commitment of BMSCs into osteoblast versus adipocyte. Thus, butein can be a plausible therapeutic drug for enhancing bone formation in osteoporotic patients.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3460-3460 ◽  
Author(s):  
Yu-Tzu Tai ◽  
Xian-Feng Li ◽  
Iris Breitkreutz ◽  
Weihua Song ◽  
Peter Burger ◽  
...  

Abstract Activation of the extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase (ERK1/2 MAPK) signaling pathway mediates tumor cell growth in many cancers, including human multiple myeloma (MM). Specifically, this pathway mediates MM cell growth and survival induced by cytokines/growth factors (i.e. IL-6, IGF-1, CD40, BAFF) and adhesion to bone marrow stromal cells (BMSCs), thereby conferring resistance to apoptosis in the bone marrow (BM) milieu. In this study, we therefore examined the effect of the MEK1/2 inhibitor AZD6244 (ARRY-142886), on human MM cell lines, freshly isolated patient MM cells and MM cells adhered to BMSCs. AZD6244, inhibits constitutive and cytokine (IL-6, IGF-1, CD40)-stimulated ERK1/2, but not AKT phosphorylation. Importantly, AZD6244 inhibits the proliferation and survival of human MM cell lines, regardless of sensitivity to conventional chemotherapy, as well as freshly isolated patient MM cells. AZD6244 induces apoptosis in patient MM cells even in the presence of BMSCs, as evidenced by caspase 3 activity and PARP cleavage at concentrations as low as 20 nM. AZD6244 overcomes resistance to apoptosis in MM cells conferred by IL-6 and BMSCs, and inhibits IL-6 secretion induced by MM adhesion to BMSCs. AZD6244 suppresses MM cell survival/growth signaling pathways (i.e., STAT3, Bcl-2, cyclin E1, CDK1, CDK3, CDK7, p21/Cdc42/Rac1-activated kinase 1, casein kinase 1e, IRS1, c-maf) and up-regulates proapoptotic cascades (i.e., BAX, BINP3, BIM, BAG1, caspase 3, 8, 6). AZD6244 also upregulates proteins triggering cell cycle arrest (i.e. p16INK4A, p18INK4C, p21/WAF1 [Cdkn1a], p27 [kip1], p57). In addition, AZD6244 inhibits adhesion molecule expression in MM cells (i.e. integrin a4 [VLA-4], integrin b7, ICAM-1, ICAM-2, ICAM-3, catenin a1, c-maf) associated with decreased MM adhesion to BMSCs. These pleiotropic proapoptotic, anti-survival, anti-adhesion and -cytokine secretion effects of AZD6244 abrogate BMSC-derived protection of MM cells, thereby sensitizing them to both conventional (dexamethasone) and novel (perifosine, lenalidomide, and bortezomib) therapies. In contrast, AZD6244 has minimal cytotoxicity in BMSCs and does not inhibit DNA synthesis in CD40 ligand-stimulated CD19 expressing B-cells derived from normal donors at concentrations toxic to MM cells (between 0.02–2 mM). Furthermore, AZD6244 inhibits the expression/secretion of osteoclast (OC)-activating factors (i.e., macrophage inflammatory protein (MIP)-1a, MIP-1b, IL-1b, VEGF) from MM cells. It also downregulates MM growth and survival factors (IL-6, BAFF, APRIL) in OC cultures derived from MM patient peripheral blood mononuclear cells (PBMCs). Significantly, AZD6244 inhibits OC differentiation from MM PBMCs (n=10) in a dose-dependent manner. Together these results provide the preclinical basis for clinical trials with AZD6244 (ARRY-142886) in MM.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1669-1669
Author(s):  
Hirokazu Miki ◽  
Shuji Ozaki ◽  
Osamu Tanaka ◽  
Shingen Nakamura ◽  
Ayako Nakano ◽  
...  

Abstract Multiple myeloma (MM) is a plasma cell malignancy characterized by devastating bone destruction due to enhanced bone resorption and suppressed bone formation. Although high-dose chemotherapy and new agents such as thalidomide, lenalidomide, and bortezomib have shown marked anti-MM activity in clinical settings, MM remains incurable due to drug resistance mediated by interactions with osteoclasts or stroma cells. Moreover, osteolytic bone disease continues to be a major problem for many patients. Therefore, alternative approaches are necessary to overcome drug resistance and inhibit osteoclasts activity in MM. KRN5500 is a new derivative of spicamycin produced by Streptomyces alanosinicus (Kirin Pharma, Tokyo, Japan), which potently inhibits protein synthesis and induces cell death in human tumor cell lines. Phase I studies of KRN5500 in patients with solid tumors such as colon cancer and gastric cancer showed acceptable toxicity with Cmax values of 1000––3000 nM. In this study, we investigated the effects of KRN5500 against MM cells and osteoclasts in vitro and in vivo. MM cell lines such as RPMI 8226, MM.1S, INA-6, KMS12-BM, UTMC-2, TSPC-1, and OPC were incubated with various concentrations of KRN5500 for 3 days. Cell proliferation assay showed marked inhibition of cell growth with G1 arrest in these MM cells (IC50: 4–100 nM). KRN5500 (100 nM) also induced 30–90% of cell death in primary MM cells (n=7). Annexin V/propidium iodide staining showed that KRN5500 induced apoptosis of MM cells in a dose- and time-dependent manner. Western blot analysis confirmed activation of caspase-8, -9, and −3, cleavage of poly (ADP-ribose) polymerase (PARP), and down-regulation of Mcl-1. We next examined the effect of KRN5500 against MM cell lines and primary MM cells in the presence of bone marrow stroma cells and osteoclasts. Co-culture of these cells enhanced viability of MM cells; however, KRN5500 still induced strong cytotoxicity to MM cells. Of interest, KRN5500 specifically mediated apoptosis in osteoclasts but not stroma cells as assessed by TUNEL staining. More than 90% of osteoclasts were killed even at a low concentration of KRN5500 (20 nM). Finally, we evaluated the effect of KRN5500 against MM cells and osteoclasts in vivo. Two xenograft models were established in SCID mice by either subcutaneous injection of RPMI 8226 cells or intra-bone injection of INA-6 cells into subcutaneously implanted rabbit bones (SCID-rab model). These mice were treated with intraperitoneal injection of KRN5500 (5 mg/kg/dose) or saline thrice a week for 3 weeks after tumor development. In a subcutaneous tumor model, KRN5500 inhibited the tumor growth compared with control mice (increased tumor size, 232 ± 54% vs 950 ± 422%, p&lt;0.001, n=6 per group). In a SCID-rab model, KRN5500 also inhibited MM cell growth in the bone marrow (increase of serum human sIL6-R derived from INA-6, 134 ± 19% vs 1112 ± 101%, p&lt;0.001, n=5 per group). Notably, the destruction of the rabbit bones was also prevented in the KRN5500-treated mice as evaluated by radiography. Therefore, these results suggest that KRN5500 exerts anti-MM effects through impairing both MM cells and osteoclasts and that this unique mechanism of action provides a valuable therapeutic option to improve the prognosis in patients with MM.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3169-3169
Author(s):  
Hugh Kikuchi ◽  
Amofa Eunice ◽  
Maeve McEnery ◽  
Farzin Farzaneh ◽  
Stephen A Schey ◽  
...  

Abstract Despite of newly developed and more efficacious therapies, multiple myeloma (MM) remains incurable as most patient will eventually relapse and become refractory. The bone marrow (BM) microenvironment provides niches that are advantageous for drug resistance. Effective therapies against MM should ideally target the various protective BM niches that promote MM cell survival and relapse. In addition to stromal mesenchymal/myofibroblastic cells, osteoclasts play a key supportive role in MM cell viability. Additionally, 80% of patients develop osteolytic lesions, which is a major cause of morbidity. Increased osteoclast activity is characteristic in these patients and targeting osteoclast function is desirable to improve therapies against MM. Osteoclasts need to form an F-actin containing ring along the cell margin that defines a resorbing compartment where protons and degradative enzymes are secreted for dissolution of bone mineral. Remodelling of F-actin and vesicle secretion are regulated by the class IA PI3K pathway during osteoclastic bone resorption. Additionally, it has recently been shown that inhibition of the class IA PI3K pathway in MM cells with GDC0941 induces apoptosis-mediated killing. We hypothesised that GDC0941 could be used as a therapeutic agent to overcome MM-induced osteoclast activation. GDC0941 inhibited maturation of osteoclasts derived from BM aspirates from MM patients in a dose dependent manner. This correlated with decreased bone resorption of osteoclasts cultured on dentine discs. Exposure of mature osteoclasts to GC0941 resulted in abnormal organisation of larger F-actin rings, suggesting a negative effect on the dynamics of the actin cytoskeleton required for bone resorption. We also found that GDC-0941 can prevent protection of the MM cell lines MM1.S and MM1.R by osteoclasts against killing. GDC-0941 alone blocked MM cell proliferation independently of the presence of BM stromal cells and synergised with other therapeutic agents including Lenalidomide, Pomalidomide, Bortezomid and Dexamethasone. We also found that in the presence of MM cells, Dexamethasone (a drug commonly used alone or in combination with new drugs against MM) induced the proliferation of BM stromal cells and adhesion of MM cells on this protective stroma in a dose dependent manner. Dexamethasone is highly effective at MM cell killing when cells are cultured alone. However, we found that at low doses (below 1 uM) and in the presence of BM stromal cells, Dexamethasone could induce MM cell proliferation. GDC0941 enhanced Dexamethasone killing even in the presence of BM stromal cells by blocking Dexamethasone-induced stromal cell proliferation and adhesion of MM cells on the stroma. Targeting individual the PI3K Class IA isoforms alpha, beta, delta or gamma proved to be a less efficient strategy to enhance Dexamethasone killing. Previous work has shown that efficacy of targeting individual PI3K Class I A isoforms would be low for activation of caspases in MM cells as it would be dependent on relative amounts of isoforms expressed by the MM patient. GDC-0941 also inhibited the proliferation of MM1.R and RPMI8266 MM cell lines, which are less sensitive to treatment to Dexamethasone. Co-culture of MM cells with BM stromal cells induced the secretion of IL-10, IL-6, IL-8, MCP-1 and MIP1-alpha. The dose-dependant increased proliferation of Dexamethasone-treated MM cells in the presence of the BM stroma correlated with the pattern of secretion of IL-10 (a cytokine that can induce B-cell proliferation) and this was blocked by the combination of Dexamethasone with GDC0941. GDC-0941 alone or in combination with Dexamethasone was more efficacious at inducing MM cell apoptosis in the presence of the BM stroma cells vs treatment of MM cells alone. These are very encouraging results as they suggest that GDC-0941 in combination with Dexamethasone would be potentially highly efficacious for targeting MM cells in the BM microenvironment. We are currently performing in vivo data using C57BL/KaLwRij mice injected with 5T33-eGFP MM cells that will be discussed at the meeting. We propose that MM patients with active bony disease may benefit from treatment with GDC0941 alone or in combination with currently used therapeutic drugs against MM. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2001 ◽  
Vol 97 (2) ◽  
pp. 516-522 ◽  
Author(s):  
Öyvind Hjertner ◽  
Henrik Hjorth-Hansen ◽  
Magne Börset ◽  
Carina Seidel ◽  
Anders Waage ◽  
...  

Abstract Bone morphogenetic proteins (BMPs) can be isolated from organic bone matrix and are able to initiate de novo cartilage and bone formation. Here it is shown that BMP-4 inhibited DNA synthesis in a dose-dependent manner in 3 IL-6–dependent multiple myeloma (MM) cell lines (OH-2, IH-1, and ANBL-6). In contrast, no effect on DNA synthesis was observed in 3 IL-6–independent MM cell lines (JJN-3, U266, and RPMI 8226). BMP-4 induced cell cycle growth arrest in the G0/G1 phase in OH-2 and ANBL-6 cells but not in IH-1 cells. BMP-4 induced apoptosis in OH-2 and IH-1 cells, but not significantly in ANBL-6 cells. Furthermore, BMP-4 induced apoptosis in freshly isolated MM cells from 4 of 13 patients. In the OH-2 and ANBL-6 cell lines and in a patient sample, immunoblotting showed that BMP-4 down-regulated IL-6–induced tyrosine phosphorylation of Stat3, suggesting a mechanism for the apparent antagonism between IL-6 and BMP-4. BMP-4 or analogues may be attractive therapeutic agents in MM because of possible beneficial effects on both tumor burden and bone disease.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1257
Author(s):  
Evangelos Terpos ◽  
Ioannis Ntanasis-Stathopoulos ◽  
Eirini Katodritou ◽  
Marie-Christine Kyrtsonis ◽  
Vassiliki Douka ◽  
...  

Carfilzomib with dexamethasone (Kd) is a well-established regimen for the treatment of relapsed/refractory multiple myeloma (RRMM). There is limited information for the effects of Kd on myeloma-related bone disease. This non-interventional study aimed to assess skeletal-related events (SREs) and bone metabolism in patients with RRMM receiving Kd, in the absence of any bone-targeted agent. Twenty-five patients were enrolled with a median of three prior lines of therapy; 72% of them had evidence of osteolytic bone disease at study entry. During Kd treatment, the rate of new SREs was 28%. Kd produced a clinically relevant (≥30%) decrease in C-telopeptide of collagen type-1 (p = 0.048) and of tartrate-resistant acid phosphatase-5b (p = 0.002) at 2 months. This reduction was at least partially due to the reduction in the osteoclast regulator RANKL/osteoprotegerin ratio, at 2 months (p = 0.026). Regarding bone formation, there was a clinically relevant increase in osteocalcin at 6 months (p = 0.03) and in procollagen type I N-propeptide at 8 months post-Kd initiation. Importantly, these bone metabolism changes were independent of myeloma response to treatment. In conclusion, Kd resulted in a low rate of SREs among RRMM patients, along with an early, sustained and clinically relevant decrease in bone resorption, which was accompanied by an increase in bone formation, independently of myeloma response and in the absence of any bone-targeted agent use.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4786-4786
Author(s):  
Merav Leiba ◽  
Yu-Tzu Tai ◽  
Teru Hideshima ◽  
Jana Jakubikova ◽  
Ikeda Hiroshi ◽  
...  

Abstract Halofuginone, a synthetic derivative of quinazolinone alkaloid, has recently been shown to have an anti-cancer effect in various solid and hematological malignancies. It is an orally available drug with a safe toxicity profile in clinical trials of inflammatory disease and has anti-angiogenic, anti-metastatic and anti-proliferative effects in preclinical studies. It blocks TGFb signaling by targeting Smad 2/3, inhibits NFkB activity, as well as downregulates extra cellular matrix (ECM) formation via the inhibition of collagen type I formation and matrix metalloproteinase 2(MMP2). Since ECM has an important role in the bone marrow microenvironment in multiple myeloma (MM) pathogenesis, we here examined whether halofuginone induces cytotoxicity against various MM cell lines, including those sensitive and resistant to conventional and novel chemotherapies. Halofuginone (12.5–400 nM) induced cytotoxicity in a dose-dependent fashion in a variety of MM cell lines (n=20), regardless of the sensitivity to conventional chemotherapy (i.e., dexamethasone, melphalan, doxorubicin) and novel therapies (i.e., lenalidomide, bortezomib) with IC50 of 50–200 nM. In contrast, halofuginone did not induce cytotoxicity against CD40-activated peripheral blood mononuclear cells from normal donors, even at high doses (500–1000nM). Importantly, neither IL6 nor IGF1, two key growth and survival factors in MM, overcame the growth inhibitory effect of halofuginone. We further examined molecular mechanisms whereby halofuginone triggers growth inhibition in MM cells. It induced both apoptosis and necrosis in a time- (2–48h) and dose (50–200 nM) dependent manner in MM1R and OPM1 MM cells, assessed by annexin V/ PI staining. Significant dose- dependent activation of caspase 3 and 8 was demonstrated after 25–200 nM of halofuginone treatment of MM1R, MM1S, and OPM1 cells. Mitochondrial membrane potential was also reduced after 24 hours of halofuginone treatment (50, 200 nM) of MM1R and OPMI cells, as evident by the accumulation of JC1 monomers. In addition, western blot analysis showed that halofuginone induces cleavage of apoptotic proteins caspase 3/8 and PARP, and downregulates anti-apoptotic protein MCL1. Taken together, these data suggest that halofuginone has significant anti-MM activities and is a potential novel therapy in MM.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Youngil Koh ◽  
Woo-June Jung ◽  
Kwang-Sung Ahn ◽  
Sung-Soo Yoon

Purpose.We tried to establish clinically relevant human myeloma cell lines that can contribute to the understanding of multiple myeloma (MM).Materials and Methods.Mononuclear cells obtained from MM patient’s bone marrow were injected via tail vein in an NRG/SCID mouse. Fourteen weeks after the injection, tumor developed at subcutis of the mouse. The engraftment of MM cells into mouse bone marrow (BM) was also observed. We separated and cultured cells from subcutis and BM.Results.After the separation and culture of cells from subcutis and BM, we established two cell lines originating from a single patient (SNU_MM1393_BM and SNU_MM1393_SC). Karyotype of the two newly established MM cell lines showed tetraploidy which is different from the karyotype of the patient (diploidy) indicating clonal evolution. In contrast to SNU_MM1393_BM, cell proliferation of SNU_MM1393_SC was IL-6 independent. SNU_MM1393_BM and SNU_MM1393_SC showed high degree of resistance against bortezomib compared to U266 cell line. SNU_MM1393_BM had the greater lethality compared to SNU_MM1393_SC.Conclusion.Two cell lines harboring different site tropisms established from a single patient showed differences in cytokine response and lethality. Our newly established cell lines could be used as a tool to understand the biology of multiple myeloma.


MRS Bulletin ◽  
1996 ◽  
Vol 21 (11) ◽  
pp. 36-39 ◽  
Author(s):  
Ugo Ripamonti ◽  
Nicolaas Duneas

Recent advances in materials science and biotechnology have given birth to the new and exciting field of tissue engineering, in which the two normally disparate fields are merging into a profitable matrimony. In particular the use of biomaterials capable of initiating new bone formation via a process called osteoinduction is leading to quantum leaps for the tissue engineering of bone.The classic work of Marshall R. Urist and A. Hari Reddi opened the field of osteoinductive biomaterials. Urist discovered that, upon implantation of devitalized, demineralized bone matrix in the muscle of experimental animals, new bone formation occurs within two weeks, a phenomenon he described as bone formation by induction. The tissue response elicited by implantation of demineralized bone matrix in muscle or under the skin includes activation and migration of undifferentiated mesenchymal cells by chemotaxis, anchoragedependent cell attachment to the matrix, mitosis and proliferation of mesenchymal cells, differentiation of cartilage, mineralization of the cartilage, vascular invasion of the cartilage, differentiation of osteoblasts and deposition of bone matrix, and finally mineralization of bone and differentiation of marrow in the newly developed ossicle.The osteoinductive ability of the extracellular matrix of bone is abolished by the dissociative extraction of the demineralized matrix, but is recovered when the extracted component, itself inactive, is reconstituted with the inactive residue—mainly insoluble collagenous bone matrix. This important experiment showed that the osteoinductive signal resides in the solubilized component but needs to be reconstituted with an appropriate carrier to restore the osteoinductive activity. In this case, the carrier is the insoluble collagenous bone matrix—mainly crosslinked type I collagen.


Sign in / Sign up

Export Citation Format

Share Document