NK Receptor (NKR)-Mediated Signaling Pathways in Cord Blood (CB) CD56dim Versus Peripheral Blood (PB) CD56dim NK Cells: Implication for Immaturity in Cord Blood NK CD56dim Innate Immunity

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4897-4897
Author(s):  
Nancy Day ◽  
Evan Shereck ◽  
Janet Ayello ◽  
Catherine McGuinn ◽  
Prakash Satwani ◽  
...  

Abstract Background: NK cells are characterized by absent CD3 but expression of CD56dim (90%, cytotoxic) and CD56bright (10%, mediator). NK cells may contribute to the immaturity in cord blood innate and adaptive immunity, and play an important role in the GVL effect post CBT. However, little is known regarding the NKR signaling pathways in CB vs PB CD56dim NK cells and its relationship to the cytotoxic activity. We previously demonstrated the ability to ex-vivo expand CB into NK subsets with profound NK in-vitro and in-vivo cytotoxic activity (Ayello/Cairo BBMT 2006). We further observed that there were 33 and 37 proteins over and under expressed by proteomic expression profiling studies of CB vs PB CD56dim (Shereck/Cairo, ASH 2007; ASPHO 2007; AACR 2007). The differential protein expressions included NKG2A, IP3R type 3, NCR3, MAPKAPK5, Notch 2, PLEK, and NF-X1 using both immunophenotype and proteomic profiling studies. Objectives: To understand the importance of NKR signaling pathways in mediating the differential protein expression and thus in regulating the NK cytotoxic activities in CB vs PB CD56dim, we compared the genomic expression pattern in CB vs PB CD56dim. Methods: For CD56dim isolation, first, NK cells were isolated indirectly by magnetic separation from non-NK cells. Second, the pre-enriched NK cells (CD56+/CD3−) from CB and PB were directly labeled with CD16 (FCGR3) MicroBeads, and the CD56+ CD16+ NK cells (CD56dim) were eluted after removing the column from the magnetic field (Miltenyi). Purity of CD56dim NK cells were then examined by flow cytometry (BD FACScan). For genomic studies, total RNA was isolated and reverse transcribed to cDNA using T7-Oligo (dT) primer. cRNA was Biotin-labeled by in vitro transcription. Fragmented biotin-labeled cRNA was hybridized to GeneChip U133A_2 in GCOS-operated Fluidics Station 450, and then scanned by GeneChip Scanner 3000 (Affymetrix). Data were analyzed using Agilent GeneSpring. Signal intensities were compared using one way ANOVA and Welch Test for statistical analysis. Results: There were 193 and 222 genes over and under expressed at the genomic level between CB vs PB CD56dim NK cells, respectively. CB vs PB CD56dim significantly overexpressed NKG2A (2.14F), CD16b (2.46F), KIR2D (2.13F), NKp44 (NCR2; 2.62F), PBX1 (4.29F), ENPEP (3.93F). There was no significant difference in NKR gene expression of CD16a, CD161, NKG2C, and NKp46 in CB vs PB CD56dim. CB vs PB CD56dim underexpressed the following NK genes: IP3R (1.32F), MAPKAPK5 (1.77F), NCR3 (1.24F), ACACB (3.23F), BBS1 (2.00F). Conclusion: CB vs PB CD56dim overexpressed NKG2A, CD16b, KIR2D, and NKp44 genes compared to only NKG2A was overexpressed at the protein level. These results suggest that NKR protein product levels in CB CD56dim may be directly regulated at the translation level, but not the transcription level. The discrepancy of IP3R, ENPEP, PBX1, and MAPKAPK5 gene expression suggest the involvements of IP3 and calcium ions in NKR signaling pathways. Since the Notch2, PLEK, and NF-X1 gene expression patterns were not increased, the augmented protein levels may result from the regulation of protein translation. The potential regulators of this process may include PBX1, ENPEP, ACACB, and BBS1 though the roles of these regulators need to be defined. We conclude that genomic differences between CB vs PB CD56dim may play an important role in regulating NKR signaling pathway, and thus contribute to disparate cytotoxic activity between CB vs PB and suggest a possible explanation for immaturity of cord blood innate and adaptive immunity.

Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 385
Author(s):  
Alaa Baazeem ◽  
Alicia Rodriguez ◽  
Angel Medina ◽  
Naresh Magan

Pistachio nuts are an important economic tree nut crop which is used directly or processed for many food-related activities. They can become colonized by mycotoxigenic spoilage fungi, especially Aspergillus flavus, mainly resulting in contamination with aflatoxins (AFs), especially aflatoxin B1 (AFB1). The prevailing climate in which these crops are grown changes as temperature and atmospheric CO2 levels increase, and episodes of extreme wet/dry cycles occur due to human industrial activity. The objectives of this study were to evaluate the effect of interacting Climate Change (CC)-related abiotic factors of temperature (35 vs. 37 °C), CO2 (400 vs. 1000 ppm), and water stress (0.98–0.93 water activity, aw) on (a) growth (b) aflD and aflR biosynthetic gene expression and (c) AFB1 production by two strains A. flavus (AB3, AB10) in vitro on milled pistachio-based media and when colonizing layers of shelled raw pistachio nuts. The A. flavus strains were resilient in terms of growth on pistachio-based media and the colonisation of pistachio nuts with no significant difference when exposed to the interacting three-way climate-related abiotic factors. However, in vitro studies showed that AFB1 production was significantly stimulated (p < 0.05), especially when exposed to 1000 ppm CO2 at 0.98–0.95 aw and 35 °C, and sometimes in the 37 °C treatment group at 0.98 aw. The relative expression of the structural aflD gene involved in AFB1 biosynthesis was decreased or only slightly increased, relative to the control conditions at elevated CO, regardless of the aw level examined. For the regulatory aflR gene expression, there was a significant (p < 0.05) increase in 1000 ppm CO2 and 37 °C for both strains, especially at 0.95 aw. The in situ colonization of pistachio nuts resulted in a significant (p < 0.05) stimulation of AFB1 production at 35 °C and 1000 ppm CO2 for both strains, especially at 0.98 aw. At 37 °C, AFB1 production was either decreased, in strain AB3, or remained similar, as in strain AB10, when exposed to 1000 ppm CO2. This suggests that CC factors may have a differential effect, depending on the interacting conditions of temperature, exposure to CO2 and the level of water stress on AFB1 production.


2005 ◽  
Vol 17 (8) ◽  
pp. 751 ◽  
Author(s):  
Mona E. Pedersen ◽  
Øzen Banu Øzdas ◽  
Wenche Farstad ◽  
Aage Tverdal ◽  
Ingrid Olsaker

In this study the synthetic oviduct fluid (SOF) system with bovine oviduct epithelial cell (BOEC) co-culture is compared with an SOF system with common protein supplements. One thousand six hundred bovine embryos were cultured in SOF media supplemented with BOEC, fetal calf serum (FCS) and bovine serum albumin (BSA). Eight different culture groups were assigned according to the different supplementation factors. Developmental competence and the expression levels of five genes, namely glucose transporter-1 (Glut-1), heat shock protein 70 (HSP), connexin43 (Cx43), β-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), analysed as mRNA by using reverse transcription–polymerase chain reaction, were measured on bovine embryos cultured for 9 days. Gene expression of these in vitro-produced embryos was compared with the gene expression of in vivo-produced embryos. There was no significant difference found in embryo developmental competence between the Day 9 embryos in BOEC co-culture, FCS and BSA supplements in SOF media. However, differences in gene expression were observed. With respect to gene expression in in vivo and in vitro embryos, BOEC co-culture affected the same genes as did supplementation with FCS and BSA. HSP was the only gene that differed significantly between in vitro and in vivo embryos. When the different in vitro groups were compared, a significant difference between the BOEC co-culture and the FCS supplementation groups due to Glut-1 expression was observed.


2010 ◽  
Vol 22 (1) ◽  
pp. 272
Author(s):  
E. S. Caixeta ◽  
P. Ripamonte ◽  
M. F. Machado ◽  
R. B. da Silva ◽  
C. Price ◽  
...  

Mammalian oocytes require pyruvate as an energy source for growth and resumption of meiosis. Because oocytes are not competent to carry out glycolysis, cumulus cells (CC) are responsible for metabolizing glucose into pyruvate and providing it to the oocyte through gap junctions. The understanding of the energetic metabolism of CC in culture conditions might provide basis for the improvement of COC in vitro maturation. The aim of this study was to determine the temporal patterns of mRNA expression of glycolytic enzymes [phosphofructokinase (PFKP), aldolase (ALDOA), triosephosphate isomerase (TPI), enolase (ENO1), pyruvate kinase (PKM2), and lactate dehydrogenase (LDHA)] in bovine CC during COC in vitro maturation with or without FSH. Immature COC (grades 1 and 2) were obtained from 2- to 8-mm follicles from abattoir ovaries (predominantly Bos indicus). Cumulus cells were separated from COC and frozen before (immature group) or after COC culture for 4, 8, 12, 16, and 20 hours with (10 ng/mL) or without FSH. Total RNA was extracted using RNeasy® (Qiagen, Valencia, CA, USA), and 100 ng of RNA was reverse transcribed using oligo dT primers and Omniscript® (Qiagen). Relative expression of target genes was assessed by real-time PCR using bovine-specific primers and Power SYBR green master mix in an ABI Prism® 7300. To select the most stable housekeeping gene for expression normalization, cyclophilin-A (CYC-A), GAPDH, and histone H2AFZ amplification profiles were compared using the geNorm applet for Microsoft Excel (Vandesompele J et al. 2002 Genome Biol. 3, 1-11); the most stable housekeeping gene was CYC-A. Relative expression values were calculated using the AACt method with efficiency correction (Pfaffl MW 2001 Nucleic Acids Res. 29, 2002-2007). Effects of time in culture and of FSH treatment were tested by ANOVA, and groups were compared by Tukey-Kramer Honestly Significant Difference test. Nonparametric analysis was used when data were not normally distributed. Abundance of mRNA of all glycolytic enzymes decreased during in vitro maturation with or without FSH. Expression of PFKP, ALDOA, TPI1, ENO1, and LDHA genes was decreased to around half of the initial value (time 0) by 4 to 8 h of culture (P < 0.05) and did not increase thereafter. A similar expression pattern was observed for PKM2, although mRNA abundance was reduced later in comparison with other enzymes; levels were decreased by 16 (without FSH) to 20 h (with FSH) of culture. The presence of FSH did not alter the overall temporal pattern of gene expression but decreased mRNA abundance for PFKP, ALDOA, and TPI1 at 20, 16 and 16 h of culture, respectively. In conclusion, gene expression of glycolytic enzymes decreased with time during COC in vitro maturation in cattle, and FSH did not have a major influence on this expression pattern. This study was supported by CAPES and FAPESP.


2019 ◽  
Vol 129 (3) ◽  
pp. 245-255 ◽  
Author(s):  
Hyun Soo Kim ◽  
Byeong-Gon Kim ◽  
Sohyeon Park ◽  
Nahyun Kim ◽  
An-Soo Jang ◽  
...  

Objectives: Diesel exhaust particles (DEP)s are notorious ambient pollutants composed of a complex mixture of a carbon core and diverse chemical irritants. Several studies have demonstrated significant relationships between DEP exposure and serious nasal inflammatory response in vitro, but available information regarding underlying networks in terms of gene expression changes has not sufficiently explained potential mechanisms of DEP-induced nasal damage, especially in vivo. Methods: In the present study, we identified DEP-induced gene expression profiles under short-term and long-term exposure, and identified signaling pathways based on microarray data for understanding effects of DEP exposure in the mouse nasal cavity. Results: Alteration in gene expression due to DEP exposure provokes an imbalance of the immune system via dysregulated inflammatory markers, predicted to disrupt protective responses against harmful exogenous substances in the body. Several candidate markers were identified after validation using qRT-PCR, including S100A9, CAMP, IL20, and S100A8. Conclusions: Although further mechanistic studies are required for verifying the utility of the potential biomarkers suggested by the present study, our in vivo results may provide meaningful suggestions for understanding the complex cellular signaling pathways involved in DEP-induced nasal damages.


2016 ◽  
Vol 11 (6) ◽  
pp. 1934578X1601100
Author(s):  
Anna K Gazha ◽  
Lyudmila A. Ivanushko ◽  
Eleonora V. Levina ◽  
Sergey N. Fedorov ◽  
Tatyana S. Zaporozets ◽  
...  

The action of seven polyhydroxylated sterol mono- and disulfates (1-7), isolated from ophiuroids, on innate and adaptive immunity was examined in in vitro and in vivo experiments. At least, three of them (1, 2 and 4) increased the functional activities of neutrophils, including levels of oxygen-dependent metabolism, adhesive and phagocytic properties, and induced the expression of pro-inflammatory cytokines TNF-α and IL-8. Compound 4 was the most active for enhancing the production of antibody forming cells in the mouse spleen.


2020 ◽  
Vol 14 ◽  
pp. 117793222091330
Author(s):  
LM Avila-Portillo ◽  
F Aristizabal ◽  
S Perdomo ◽  
A Riveros ◽  
B Ospino ◽  
...  

Biosimilars of granulocyte colony-stimulating factor (G-CSF) have been routinely introduced into clinical practice. However, not functional genomics characterization has been performed yet in comparison with the innovator G-CSF. This study aimed to evaluate the transcriptomic changes in an in vitro model of umbilical cord blood cells (UBC) exposed to G-CSF for the identification of their modulated pathways. Umbilical cord blood cells–derived mononuclear cells (MNCs) were treated with biosimilar and innovator G-CSF for further gene expression profiling analysis using a microarray-based platform. Comparative analysis of biosimilar and innovator G-CSF gene expression signatures allowed us to identify the most commonly modulated pathways by both drugs. In brief, we observed predominantly upmodulation of transcripts related to PI3K-Akt, NF-kappaB, and tumor necrosis factor (TNF) signaling pathways as well as transcripts related to negative regulation of apoptotic process among others. In addition, hematopoietic colony-forming cell assays corroborate the G-CSF phenotypic effects over UBC-derived MNCs. In conclusion, our study suggests that G-CSF impacts UBC-derived cells through the modulation of several signaling pathways associated with cell survival, migration, and proliferation. The concordance observed between biosimilar and innovator G-CSF emphasizes their similarity in regards to their specificity and biological responses.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Arman Rahimmi ◽  
Ilaria Peluso ◽  
Aref Rajabi ◽  
Kambiz Hassanzadeh

There are still unknown mechanisms involved in the development of Parkinson’s disease (PD), which elucidating them can assist in developing efficient therapies. Recently, studies showed that genes located on the human chromosomal location 22q11.2 might be involved in the development of PD. Therefore, the present study was designed to evaluate the role of two genes located on the chromosomal location (miR-185 and SEPT5), which were the most probable candidates based on our bibliography. In vivo and in vitro models of PD were developed using male Wistar rats and SHSY-5Y cell line, respectively. The expression levels of miR-185, SEPT5, LRRK2, and PARK2 genes were measured at a mRNA level in dopaminergic areas of rats’ brains and SHSY-5Y cells using the SYBR Green Real-Time PCR Method. Additionally, the effect of inhibition on the genes or their products on cell viability and gene expression pattern in SHSY-5Y cells was investigated. The level of miR-185 gene expression was significantly decreased in the substantia nigra (SN) and striatum (ST) of the rotenone-treated group (control group) compared to the healthy normal group (P<0.05). In addition, there was a significant difference in the expression of SEPT5 gene (P<0.05) in the substantia nigra between two studied groups. The results of an in vitro study showed no significant change in the expression of the genes; however, the inhibition on miR-185 gene expression led to the increase in LRRK2 gene expression in SHSY-5Y cells. The inhibition on LRRK2 protein also decreased the cellular toxicity effect of rotenone on SHSY-5Y cells. The results suggested the protective role of miR-185 gene in preventing the development of PD.


2008 ◽  
Vol 89 (3) ◽  
pp. 751-759 ◽  
Author(s):  
April Keim Parker ◽  
Wayne M. Yokoyama ◽  
John A. Corbett ◽  
Nanhai Chen ◽  
R. Mark L. Buller

Natural killer (NK) cells are known for their ability to lyse tumour cell targets. Studies of infections by a number of viruses, including poxviruses and herpesviruses, have demonstrated that NK cells are vital for recovery from these infections. Little is known of the ability of viruses to infect and complete a productive replication cycle within NK cells. Even less is known concerning the effect of infection on NK cell biology. This study investigated the ability of ectromelia virus (ECTV) to infect NK cells in vitro and in vivo. Following ECTV infection, NK cell gamma interferon (IFN-γ) production was diminished and infected cells ceased proliferating and lost viability. ECTV infection of NK cells led to early and late virus gene expression and visualization of immature and mature virus particles, but no detectable increase in viable progeny virus. It was not unexpected that early gene expression occurred in infected NK cells, as the complete early transcription system is packaged within the virions. The detection of the secreted early virus-encoded immunomodulatory proteins IFN-γ-binding protein and ectromelia inhibitor of complement enzymes (EMICE) in NK cell culture supernatants suggests that even semi-permissive infection may permit immunomodulation of the local environment.


Blood ◽  
2003 ◽  
Vol 102 (1) ◽  
pp. 127-135 ◽  
Author(s):  
Christian P. Kalberer ◽  
Uwe Siegler ◽  
Aleksandra Wodnar-Filipowicz

Abstract Definition of the cytokine environment, which regulates the maturation of human natural killer (NK) cells, has been largely based on in vitro assays because of the lack of suitable animal models. Here we describe conditions leading to the development of human NK cells in NOD/SCID mice receiving grafts of hematopoietic CD34+ precursor cells from cord blood. After 1-week-long in vivo treatment with various combinations of interleukin (IL)–15, flt3 ligand, stem cell factor, IL-2, IL-12, and megakaryocyte growth and differentiation factor, CD56+CD3- cells were detected in bone marrow (BM), spleen, and peripheral blood (PB), comprising 5% to 15% of human CD45+ cells. Human NK cells of NOD/SCID mouse origin closely resembled NK cells from human PB with respect to phenotypic characteristics, interferon (IFN)–γ production, and cytotoxicity against HLA class 1–deficient K562 targets in vitro and antitumor activity against K562 erythroleukemia in vivo. In the absence of growth factor treatment, CD56+ cells were present only at background levels, but CD34+CD7+ and CD34-CD7+ lymphoid precursors with NK cell differentiation potential were detected in BM and spleen of chimeric NOD/SCID mice for up to 5 months after transplantation. Our results demonstrate that limitations in human NK cell development in the murine microenvironment can be overcome by treatment with NK cell growth–promoting human cytokines, resulting in the maturation of IFN-γ–producing cytotoxic NK cells. These studies establish conditions to explore human NK cell development and function in vivo in the NOD/SCID mouse model. (Blood. 2003;102:127-135)


Sign in / Sign up

Export Citation Format

Share Document