23 Years of Management: A Retrospective Review of Treatment for Aplastic Anemia.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1091-1091
Author(s):  
Connie M Piccone ◽  
Marie Boorman Martin ◽  
Zung Vu Tran ◽  
Kim Smith-Whitley

Abstract Abstract 1091 Poster Board I-113 Introduction Aplastic anemia (AA) is a syndrome of bone marrow failure characterized by peripheral pancytopenia and marrow hypoplasia. In the past, AA was considered to be a fatal disease; however, current therapies, including bone marrow transplantation or immunosuppressive therapy (IST) with antithymocyte globulin (ATG) and cyclosporine (CSA), are curative in the majority of patients. IST is effective at restoring hematopoietic stem cell production, but relapse and evolution to myelodysplastic syndromes remain clinical challenges. Additionally, there is no real consensus regarding optimal CSA levels, duration of CSA treatment, or the optimal use of growth factors and their relationship to the development of clonal disease. Objectives The primary objective was to review treatment management for severe AA in pediatric patients in order to elucidate treatment differences and review morbidity and mortality as they relate to treatment variation. Study Design/Methods A retrospective review of pediatric patients treated at the Children's Hospital of Philadelphia for AA (both severe and moderate) over a 23 year period was performed. Results A total of 70 patients with AA were treated at our institution from 1985 to July 2008. Exclusions included: 6 patients who received some type of initial treatment at outside institutions, 4 patients who had missing records, and 2 patients who had a diagnosis of moderate AA. Thus, a total of 58 patient records were included in the analysis. Of the total patients reviewed, 60% were male and 40% were female. 34.5% of patients were African-American, and 57% were diagnosed in 2000 or later. The mean age at diagnosis was 9.5±5.8 years. 52% fell into the category of very severe AA based on published diagnostic criteria, 45% had severe AA, and 2 patients (3%) had moderate AA. 15.5% of patients developed AA in the setting of acute hepatitis. More than half of the patients treated with IST had a complete response (CR). The average time to CR was 15±15 months. Average duration of CSA treatment was 15±13 months and 8.6±10.7 months for growth factor. Two patients (3.5%) died, one from complications unrelated to AA and one from infectious complications post-BMT after initial IST failure. Average time to transfusion independence for all patients was 8±11 months (with a range of 0-54 months). Not surprisingly, the time to transfusion independence was significantly associated with IST failure (p=0.010). Patients who failed treatment had an average time to transfusion independence of 17±16 months as compared to those who were complete responders who had an average time to transfusion independence of 3±3 months. Additionally, there was a significant association between IST failure and CSA levels (p=0.014). Patients who had nontherapeutic CSA levels overall had an increased rate of treatment failure. Of those patients who were nontherapeutic, 56% were noncompliant with CSA administration. There was no significant association between IST failure and bone marrow cellularity (p=0.251). PNH was diagnosed in 5% of patients; there were no patients with evidence of myelodysplastic syndrome (MDS). Two of the 3 patients with PNH failed initial IST. Another 2 patients had evidence of a cytogenetic abnormality (16q deletion), but never progressed to MDS. (Note: averages presented as mean±SD) Conclusions/Methods With current IST regimens, AA is curative in the majority of pediatric patients. IST failure was associated with nonadherence to CSA treatment. For patients with confirmed clonal disease, it is possible that IST failure and the ultimate development of clonal disease are related. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. SCI-1-SCI-1
Author(s):  
Sioban Keel

The classical Inherited Bone Marrow Failure Syndromes (IBMFS) such as Fanconi anemia, Dyskeratosis Congenita, Shwachman-Diamond syndrome, and Diamond-Blackfan anemia are a heterogeneous group of disorders, all of which are characterized by impaired hematopoiesis, varying degrees of peripheral cytopenias and marrow hypoplasia and dysplasia. Many of these are associated with an increased risk of clonal dominance and evolution to myelodyplastic syndrome (MDS) and acute myeloid leukemia (AML). For the purposes of this talk, the familial MDS and acute leukemia predisposition syndromes are also included in the broad term IBMFS. The genes responsible for a subset of IBMFS have been identified and will be reviewed. However, the causative mutations in many patients presenting with seemingly inherited marrow failure remain unknown. Gene discovery in IBMFS has been difficult in large part due to the phenotypic heterogeneity of these syndromes. Some patients with IBMFS display a distinct clinical phenotype with associated syndromic abnormalities, others are variable and overlap with one another or with acquired MDS or idiopathic acquired aplastic anemia, and additional cases are more obscure and have evaded classification altogether. Accurate diagnosis of IBMFS inform patient care as it allows appropriate screening of siblings to avoid choosing an affected donor if marrow transplant is indicated and the selection of an appropriate transplant conditioning regiment to avoid undue toxicity. Additionally, accurate diagnosis allows appropriate medical monitoring and early intervention to successfully treat disease-specific non-hematologic medical complications. The application of next generation sequencing approaches for comprehensive genetic screening of IBMFS, including these cryptic or atypical presentations will be reviewed. In addition to providing accurate diagnoses in a subset of patients, genetic characterization in small family kindreds or even in single individuals presents unique opportunities to discover new genes and pathways contributing to dysfunctional hematopoiesis and clonal progression. The frequency of inherited mutations in known IBMFS genes among seemingly idiopathic acquired aplastic anemia patients or pediatric and younger adults with MDS referred for hematopoietic stem cell transplant will be reviewed. Future genetic studies are needed to characterize the secondary genetic events that lead to disease progression in IBMFS. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1172-1172
Author(s):  
Melanie C Ruzek ◽  
Kathleen Phillips ◽  
Susan Richards ◽  
Khalid Mamlouk ◽  
John Williams ◽  
...  

Abstract Abstract 1172 Acquired aplastic anemia is an immune-mediated disease where destruction of hematopoietic stem cells (HSCs) in the bone marrow results in severe and life-threatening pancytopenia. Thymoglobulin® is often used as immunosuppressive therapy in this disease with up to 80 percent of patients responding to a combination of Thymoglobulin and cyclosporine. In an effort to better understand the activities and mechanism of action of Thymoglobulin we developed a mouse model of immune-mediated aplastic anemia and evaluated a murine surrogate of Thymoglobulin®, rabbit anti-mouse thymocyte globulin (mATG) in this model. We modified a graft-versus-host (GVH)-induced model described in the literature (Bloom, et al., 2004) utilizing HSC-depleted spleen cells transferred from C57BL/6 into CByB6F1 mice instead of lymph node cell transfer. Our modified model shows a cell dose-dependent increase in pancytopenia and lethality. Mice receiving a high dose (100×106) of HSC-depleted splenocytes experienced severe pancytopenia and rapid death occurring around day 21 whereas mice receiving lower doses (70×106, 35×106 and 17×106) of cells showed progressively less pancytopenia and lethality as the dose of cells decreased. Histopathology also showed marked loss of hematopoietic progenitor cells in the bone marrow with little evidence of GVHD in other tissues. Prophylactic administration of mATG (25mg/kg, 2x, day 0 and 3) to mice given high doses of HSC-depleted splenocytes (100×106) resulted in a significant improvement in pancytopenia and survival (70%) in this model. Interestingly, therapeutic administration of mATG was more effective when given later relative to disease induction. Delivery of mATG (25mg/kg, 2x, three days apart) starting on day 3 showed some delay in disease progression (day 30 vs day 21) and mATG started on day 6 slightly increased survival (40%). However, mice receiving mATG starting on days 10 or 14 showed a much greater overall survival of 100% and 60%, respectively, with full rebound of hematopoietic cells in the blood to normal levels. The complete response observed with later mATG administration (day 10 or day 14) mimics the treatment and response of patients given Thymoglobulin®. In summary, we have established a novel model of HSC-depleted splenocyte induction of bone marrow failure in mice that is responsive to therapeutic ATG administration. Studies in this model will aid in further understanding the mechanism of ATG in aplastic anemia and may contribute to the development of potential new therapies. Disclosures: Ruzek: Genzyme: Employment. Phillips:Genzyme: Employment. Richards:Genzyme: Employment. Mamlouk:Genzyme: Employment. Williams:Genzyme: Employment. Garman:Genzyme: Employment.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2406-2406
Author(s):  
Katie A Matatall ◽  
Mira Jeong ◽  
Sun Deqiang ◽  
Claudine Salire ◽  
Katherine Y. King

Abstract Background: While inflammation is necessary to fight infection and repair damaged tissue, excessive inflammation can cause bone marrow suppression and promote cancer. In an extreme example, high levels of the inflammatory cytokine interferon gamma (IFNg) deplete hematopoietic stem cells (HSCs), resulting in aplastic anemia. Patients with this dangerous disease are pancytopenic and therefore at high risk of death from infection. Pancytopenia also occurs to a lesser extent in other inflammatory conditions such as chronic infections (tuberculosis, HIV), and autoimmune diseases (hemophagocytic histiocytosis). However, the mechanism by which HSCs are damaged by IFNg remains poorly understood. We used a mouse model of Mycobacterium avium infection to study the effects of sustained IFNg exposure on primitive hematopoiesis. In prior work, we found, surprisingly, that IFNg promotes division of quiescent HSCs. We hypothesized that cell division might lead to loss of HSCs through terminal differentiation, displacement, or activation of p53-dependent apoptosis pathways. Objective: We sought to determine whether prolonged IFNg stimulation would lead experimentally to exhaustion of the HSC compartment, and to determine the mechanism of inflammation-mediated HSC loss. Methods: We conducted repeated monthly infection of C57Bl/6 WT mice with 2 x 106 cfu M. avium, thereby generating a sustained chronic IFNg response. We characterized the blood and bone marrow of treated mice by histology, flow cytometry, colony forming assays, and bone marrow transplant. Results: Mice infected with M. avium became anemic and leukopenic after 6 months of repeated infection. High IFNg levels were sustained in the mice, with evidence of IFNg production by T cells and NK cells in the bone marrow. The number of committed hematopoietic progenitors gradually decreased and HSCs were depleted in the bone marrow by four months following initial infection, without evidence of extensive myelofibrosis. The marrow was hypercellular with a significant increase in granulocytes. Meanwhile, the myeloid differentiation capacity of the marrow was reduced, consistent with terminal differentiation of myeloid-biased HSCs, as we have previously described. Despite an overall reduction in HSC number, the HSCs that remained in chronically infected animals mostly retained their self-renewal potential, with subtle self-renewal defects evident only after two rounds of transplantation. Homing of HSCs from infected animals was not impaired, but ex vivo culture and apoptosis assays indicated that HSCs from chronically infected animals had reduced colony forming ability and were more prone to cell death upon secondary stress. These findings were recapitulated by introduction of recombinant IFNg alone. RNAseq profiling of HSCs from infected and control animals reflected increased proliferation and differentiation during infection, consistent with the above findings. Conclusions: We have established a novel mouse model of bone marrow failure related to chronic IFNg stimulation. We demonstrate that chronic infection can deplete the HSC pool by promoting HSC differentiation and lowering the threshold for apoptosis. These mechanisms may drive marrow suppression in patients with aplastic anemia, hemophagocytic histiocytosis (also associated with high IFNg levels), and patients with marrow failure associated with chronic infection. Furthermore, since a reduction in HSC number results in depletion of clonal heterogeneity, our findings have significant implications regarding the mechanism by which chronic inflammation can contribute to the emergence of clonal hematopoiesis and hematologic malignancies with age. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1502-1502 ◽  
Author(s):  
Arati Khanna-Gupta ◽  
Durga Sarvepalli ◽  
Snigdha Majumder ◽  
Coral Karunakaran ◽  
Malini Manoharan ◽  
...  

Abstract Acquired Aplastic anemia (AA) is a bone marrow failure syndrome characterized by pancytopenia and marrow hypoplasia, and is mediated by immune destruction of hematopoietic stem cells. Mutations in several genes including telomerase, a ribonucleoprotein enzyme complex, consisting of a reverse transcriptase enzyme (TERT), an RNA template (TERC), and several stabilizing proteins, and the associated shelterin complexes have been found in both congenital and idiopathic AA. In particular, several TERT and TERC mutations reduce telomerase activity in vitro and accelerate telomere attrition in vivo. Shortened telomeres have been observed in a third of idiopathic AA patients, but only 10% of these patients have mutations in genes of the telomerase complex. We have recently demonstrated that in addition to keeping telomeres from shortening, telomerase directly regulates transcriptional programs of developmentally relevant genes (Ghosh et al, Nat Cell Biol, 2012, 14, 1270). We postulate that changes in expression of telomerase associated genes, specifically TERT, contribute to the etiology of aplastic anemia. In an effort to better understand the molecular and clinical correlates of this disease, 24 idiopathic AA patient samples were collected at a tertiary medical center in Bangalore, India. Following informed consent, we performed RT-PCR analysis on harvested RNA from each patient and measured levels of TERT expression compared to that of normal controls (n=6). An 8 fold reduction in TERT expression was observed in 17/24 patients, while 7/24 patients maintained normal TERT expression. In general, TERT-low patients were younger in age (mean age 29y) compared with the TERT-normal patients (mean age 40y). TERT-low patients were more likely to have severe aplastic anemia (SAA) leading to higher mortality and poorer response to therapy, with 6/17 patients dying and 4/17 not responding to ATG therapy. Targeted panel sequencing of the 24 samples on an Illumina platform revealed that while TERT-normal patients had no mutations in genes associated with the telomerase/shelterin complex, TERT-low patients carried predicted pathogenic variants in TERT, TEP1, TINF2, NBN, TPP1, HSP90A and POT1 genes, all associated with the telomerase complex. Somatic gene variants were also identified in other AA associated genes, PRF1 and CDAN1, in the TERT-low cohort. In addition, novel predicted pathogenic mutations associated with the shelterin complex were found in two TERT-low patients in the TNKS gene. We also detected mutations in TET2, BCORL1, FLT-3, MLP and BRAF genes in TERT-low patients. Mutations in these genes are associated with clonal evolution, disease progression and poor prognosis. Our observations were further illustrated in a single patient where normal TERT expression was noted at initial clinical presentation. ATG therapy led to CR, but the patient returned within a year and succumbed to E.coli related sepsis. At that stage he had low TERT expression, suggesting that TERT expression can change as the disease progresses. Taken together, our data support the hypothesis that loss of TERT expression correlates with disease severity and poor prognosis. Our observations further suggest that preliminary and periodic evaluation of TERT expression levels in AA patients is likely to serve as a predictor of disease severity and influence the choice of therapy. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5016-5016
Author(s):  
Wenrui Yang ◽  
Xin Zhao ◽  
Guangxin Peng ◽  
Li Zhang ◽  
Liping Jing ◽  
...  

Aplastic anemia (AA) is an immune-mediated bone marrow failure, resulting in reduced number of hematopoietic stem and progenitor cells and pancytopenia. The presence of paroxysmal nocturnal hemoglobinuria (PNH) clone in AA usually suggests an immunopathogenesis in patients. However, when and how PNH clone emerge in AA is still unclear. Hepatitis associated aplastic anemia (HAAA) is a special variant of AA with a clear disease course and relatively explicit immune pathogenesis, thus serves as a good model to explore the emergence and expansion of PNH clone. To evaluate the frequency and clonal evolution of PNH clones in AA, we retrospectively analyzed the clinical data of 90 HAAA patients that were consecutively diagnosed between August 2006 and March 2018 in Blood Diseases Hospital, and we included 403 idiopathic AA (IAA) patients as control. PNH clones were detected in 8 HAAA patients (8.9%,8/90) at the time of diagnosis, compared to 18.1% (73/403) in IAA. Eight HAAA patients had PNH clone in granulocytes with a median clone size of 3.90% (1.09-12.33%), and 3 patients had PNH clone in erythrocytes (median 4.29%, range 2.99-10.8%). Only one HAAA patients (1/8, 12.5%) had a PNH clone larger than 10%, while 24 out of 73 IAA patients (32.9%) had larger PNH clones. Taken together, we observed a less frequent PNH clone with smaller clone size in HAAA patients, compared to that in IAAs. We next attempted to find out factors that associated with PNH clones. We first split patients with HAAA into two groups based on the length of disease history (≥3 mo and < 3mo). There were more patients carried PNH clone in HAAA with longer history (21.4%, 3/14) than patients with shorter history (6.6%, 5/76), in line with higher incidence of PNH clone in IAA patients who had longer disease history. Then we compared the PNH clone incidence between HAAA patients with higher absolute neutrophil counts (ANC, ≥0.2*109/L) and lower ANC (< 0.2*109/L). Interestingly, very few VSAA patients developed PNH clone (5%, 3/60), while 16.7% (5/30) of non-VSAA patients had PNH clone at diagnosis. We monitored the evolution of PNH clones after immunosuppressive therapy, and found increased incidence of PNH clone over time. The overall frequency of PNH clone in HAAA was 20.8% (15/72), which was comparable to that in IAA (27.8%, 112/403). Two thirds of those new PNH clones occurred in non-responders in HAAA. In conclusion, PNH clones are infrequent in HAAA compared to IAA at the time of diagnosis, but the overall frequency over time are comparable between the two groups of patients. In SAA/VSAA patients who are under the activated abnormal immunity, longer clinical course and relatively adequate residual hematopoietic cells serve as two important extrinsic factors for HSCs with PIGA-mutation to escape from immune attack and to expand. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 4 (21) ◽  
pp. 5540-5546
Author(s):  
Laurent Schmied ◽  
Patricia A. Olofsen ◽  
Pontus Lundberg ◽  
Alexandar Tzankov ◽  
Martina Kleber ◽  
...  

Abstract Acquired aplastic anemia and severe congenital neutropenia (SCN) are bone marrow (BM) failure syndromes of different origin, however, they share a common risk for secondary leukemic transformation. Here, we present a patient with severe aplastic anemia (SAA) evolving to secondary chronic neutrophilic leukemia (CNL; SAA-CNL). We show that SAA-CNL shares multiple somatic driver mutations in CSF3R, RUNX1, and EZH2/SUZ12 with cases of SCN that transformed to myelodysplastic syndrome or acute myeloid leukemia (AML). This molecular connection between SAA-CNL and SCN progressing to AML (SCN-AML) prompted us to perform a comparative transcriptome analysis on nonleukemic CD34high hematopoietic stem and progenitor cells, which showed transcriptional profiles that resemble indicative of interferon-driven proinflammatory responses. These findings provide further insights in the mechanisms underlying leukemic transformation in BM failure syndromes.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3426-3426 ◽  
Author(s):  
Andrew Shih ◽  
Ian H. Chin-Yee ◽  
Ben Hedley ◽  
Mike Keeney ◽  
Richard A. Wells ◽  
...  

Abstract Abstract 3426 Introduction: Paroxysmal Nocturnal Hemoglobinuria (PNH) is a rare disorder due to a somatic mutation in the hematopoietic stem cell. The introduction of highly sensitive flow cytometric and aerolysin testing have shown the presence of PNH clones in patients with a variety of other hematological disorders such as aplastic anemia (AA) and myelodysplasic syndrome (MDS). It is hypothesized that patients with these disorders and PNH clones may share an immunologic basis for marrow failure with relative protection of the PNH clone, due to their lack of cell surface expression of immune accessory proteins. This is supported by the literature showing responsiveness in AA and MDS to immunosuppressive treatments. Preliminary results from a recent multicenter trial, EXPLORE, notes that PNH clones can be seen in 70% of AA and 55% of MDS patients, and therefore there may be utility in the general screening of all patients with bone marrow failure (BMF) syndromes. Furthermore, it has been suggested that the presence of PNH cells in MDS is a predictive biomarker that is clinically important for response to immunosuppressive therapy. Methods: Our retrospective cohort study in a tertiary care center used a high sensitivity RBC and FLAER assay to detect PNH clones as small as 0.01%. Of all patients screened with this method, those with bone marrow biopsy and aspirate proven MDS, AA, or other BMF syndromes (defined as unexplained cytopenias) were analysed. Results from PNH assays were compared to other clinical and laboratory parameters such as LDH. Results: Overall, 102 patients were initially screened over a 12 month period at our center. 30 patients were excluded as they did not have biopsy or aspirate proven MDS, AA, or other BMF syndromes. Of the remaining 72 patients, four patients were found to have PNH clones, where 2/51 had MDS (both RCMD, IPSS 0) [3.92%] and 2/4 had AA [50%]. The PNH clone sizes of these four patients were 0.01%, 0.01%, 0.02%, and 1.7%. None of the MDS patients with known recurrent karyotypic abnormalities had PNH clones present. Only one of the four patients had a markedly increased serum LDH level. Conclusions: Our retrospective study indicates much lower incidence of PNH clones in MDS patients or any patients with BMF syndromes when compared to the preliminary data from the EXPLORE trial. There is also significant disagreement in other smaller cohorts in regards to the incidence of PNH in AA and MDS. Screening for PNH clones in patients with bone marrow failure needs further study before adoption of widespread use. Disclosures: Keeney: Alexion Pharmaceuticals Canada Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees. Wells:Alexion Pharmaceuticals Canada Inc: Honoraria. Sutherland:Alexion Pharmaceuticals Canada Inc.: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3420-3420
Author(s):  
Kohei Hosokawa ◽  
Takamasa Katagiri ◽  
Naomi Sugimori ◽  
Ken Ishiyama ◽  
Yumi Sasaki ◽  
...  

Abstract Abstract 3420 Background: Numerical karyotypic abnormalities such as −7/del(7q) and del(13q) are occasionally seen in patients with bone marrow (BM) failure who do not have typical signs of myelodysplasia. The WHO 2008 defined this subset of BM failure as MDS-U because of its likely association with a risk of evolving into leukemia, while the presence of isolated abnormalities including +8, del(20q), and -Y was not considered to be presumptive evidence of MDS. Previous studies showed that BM failure patients with del(13q) responded to immunosuppressive therapy (IST) and had a favorable prognosis (Ishiyama K et al, Br J Haematol; 117: 747. 2002; Sloand, JCO 2010). However, the clinical features of del(13q) BM failure remain unclear due to its low incidence as well as the frequently associated karyotypic abnormalities. Objectives/Methods: To characterize the clinicopathological features of patients with BM failure with del(13q), this study reviewed the clinical data of 1705 BM failure patients (733 with AA, 286 with MDS-RCUD, 149 with RCMD, 60 with MDS-U) whose blood was examined for the presence of glycosylphosphatidyl-inositol anchored protein (GPI-AP)-deficient granulocytes and erythrocytes from May 1999 through July 2010. Genomic DNA was isolated from the peripheral blood cells of 7 patients with 13q- and was subjected to SNP array-based genome-wide analysis for genetic alterations using GeneChip® 250K arrays to identify the gene locus that is commonly deleted as a result of 13q-. Results: The 13q- clone was found in 25 (1.5%) of the 1705 patients. All the 13q- patients were classified as MDS-U, due to the absence of significant dysplasia to fulfill the criteria for MDS defined by the WHO 2008 classification. BM was hypocellular in 17 patients and normocellular in 6. Seventeen patients had a clone with 13q- alone, while the remaining 8 patients had a clone with 13q- and other numerical abnormalities including –Y, +mar in 2, and −20, del(7q), +8, der(1;7) in 1. A significant increase in the percentage of GPI-AP- granulocytes was detected in 366 (50%) of 733 patients with AA and 115 (23%) of 495 patients with MDS. GPI-AP- cells were detected in all (100%) of the 17 patients with 13q- alone. On the other hand, the prevalence of increased GPI-AP− cells in patients with 13q- plus other abnormalities and in those with the normal karyotype was 38% (3/8) and 43% (405/937), respectively. Fifteen patients with 13q- alone were treated with IST (ATG + cyclosporine in 6 and cyclosporine ± anabolic steroid in 9) and all of them achieved either a PR or a CR, while in the patients with 13q- plus other abnormalities, the response rate to IST was 40%. A total of 106 patients with the normal karyotype were treated with ATG+CsA (48) or CsA±AS (58) and the response rates were 73% and 85%, respectively. None of the 17 13q- patients progressed to advanced MDS or AML during the follow-up period of 3 to 108 months (median: 52 months) while 2 of 8 patients with 13q- plus other abnormalities developed AML. The 5-year overall survival rates of the patients with 13q-, those with 13q- plus other abnormalities, and patients with a normal karyotype were 84%, 45%, and 91%, respectively. The percentage of 13q- clones increased in 5 patients, and decreased in 3 patients after successful IST. When GPI-AP- and GPI-AP+ granulocytes were subjected to a FISH analysis using a 13q probe (13q14.3), the 13q- clones were detected only in of GPI-AP+ granulocytes, suggesting that 13q- cells are derived from non-PIG-A mutant HSCs. SNP arrays identified 13q13.3 to 13q14.3 regions in all cases. Conclusions: MDS-U with 13q- is a benign BM failure syndrome characterized by a good response to IST and a markedly high prevalence of GPI-AP cells. Patients with this type of BM failure may be inappropriately treated with hypomethylating agents or hematopoietic stem cell transplantation from unrelated donors, which is associated with high therapy-related mortality. Therefore, del(13q) should be eliminated from the intermediate prognosis group defined by the IPSS, and BM failure with del(13q) should be managed as idiopathic AA. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1224-1224
Author(s):  
Junke Zheng ◽  
Chengcheng Zhang

Abstract Abstract 1224 How stem cells interact with the microenvironment to regulate their cell fates and metabolism is largely unknown. Here we show that, in a hematopoietic stem cell (HSC) -specific inducible knockout model, the cytoskeleton-modulating protein profilin 1 (pfn1) is essential for the maintenance of multiple cell fates and metabolism of HSCs. The deletion of pfn1 in HSCs led to bone marrow failure, loss of quiescence, increased apoptosis, and mobilization of HSCs in vivo. In reconstitution analyses, pfn1-deficient cells were selectively lost from mixed bone marrow chimeras. By contrast, pfn1 deletion did not significantly affect differentiation or homing of HSCs. When compared to wild-type cells, levels of expression of Hif-1a, EGR1, and MLL were lower and an earlier switch from glycolysis to mitochondrial respiration with increased ROS level was observed in pfn1-deficient HSCs. This switch preceded the detectable alteration of other cell fates. Importantly, treatment of pfn1-deficient mice with the antioxidant N-acetyl-l-cysteine reversed the ROS level and loss of quiescence of HSCs, suggesting that pfn1 maintained metabolism is required for the quiescence of HSCs. Furthermore, we demonstrated that expression of wild-type pfn1 but not the actin-binding deficient or poly-proline binding-deficient mutants of pfn1 rescued the defective phenotype of pfn1-deficient HSCs. This result indicates that actin-binding and proline-binding activities of pfn1 are required for its function in HSCs. Thus, pfn1 plays an essential role in regulating the retention and metabolism of HSCs in the bone marrow microenvironment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1181-1181 ◽  
Author(s):  
Laura G. Schuettpelz ◽  
Joshua N. Borgerding ◽  
Priya Gopalan ◽  
Matt Christopher ◽  
Molly Romine ◽  
...  

Abstract Recent studies demonstrate that inflammatory signals regulate hematopoietic stem cells (HSCs). Granulocyte-colony stimulating factor (G-CSF) is often induced with infection and plays a key role in the stress granulopoiesis response. However, its effects on HSCs are unclear. Herein, we show that treatment with G-CSF induces expansion and increased quiescence of phenotypic HSCs, but causes a marked, cell-autonomous HSC repopulating defect. RNA profiling and flow cytometry studies of HSCs from G-CSF treated mice show that multiple toll- like receptors (TLRs) are upregulated in HSCs upon G-CSF treatment, and gene set enrichment analysis shows enhancement of TLR signaling in G-CSF-treated HSCs. G-CSF-induced expansion of phenotypic HSCs is reduced in mice lacking the TLR signaling adaptors MyD88 or Trif, and the induction of quiescence is abrogated in mice lacking these adaptors. Furthermore, loss of TLR4 mitigates the G-CSF-mediated HSC repopulating defect. Interestingly, baseline HSC function is also dependent on TLR signaling. We show that HSC long-term repopulating activity is enhanced in Tlr4-/- and MyD88-/- mice, but not Trif-/- mice. One potential source of TLR ligands affecting HSC function in the bone marrow is the gut microbiota. Indeed, we show that in mice treated with antibiotics to suppress intestinal flora, G-CSF induced HSC quiescence and hematopoietic progenitor mobilization are attenuated. Moreover, in germ free mice, HSC long-term repopulating activity is enhanced. Collectively these data suggest that low level TLR agonist production by commensal flora contributes to the regulation of HSC function and that G-CSF negatively regulates HSCs, in part, by enhancing TLR signaling. Our finding of enhanced TLR signaling upon G-CSF treatment, and the mitigation of G-CSF’s effects in mice deficient for TLR signaling or commensal organisms, suggest that TLR antagonists and/or agonists may ultimately be used clinically to enhance engraftment following bone marrow transplantation or applied toward the treatment of patients with bone marrow failure. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document