Low Risk of Infectious Events in Patients (Pts) with Chronic Myeloid Leukemia (CML) in Chronic Phase (CP) Treated with Dasatinib.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3291-3291
Author(s):  
Ali M Al -Ameri ◽  
Hagop Kantarjian ◽  
Elizabeth Burton ◽  
Susan O'Brien ◽  
Farhad Ravandi ◽  
...  

Abstract Abstract 3291 Poster Board III-1 Background: In vitro, dasatinib inhibits proliferation of CD8+ T cells in a dose-dependent manner, associated with decreased secretion of interferon-gamma and granzyme B, as well as arrest of CD8+ T cells in the G0/G1 phase of cell cycle (Blake SJ Blood 2008 Feb.1;111(3):1366-77)). Inhibition of CD8+ T cells has also been shown in blood samples from patients receiving dasatinib compared with their T cell status prior to dasatinib (Cara K.Fraser, Ex.Hema.2009; 37:256-265). These immunosuppressive properties have raised concerns about potential high risk for opportunistic and other infections among patients treated with dasatinib. Aim: Investigate the frequency and characteristics of infectious events in pts with CML in CP treated with dasatinib. Methods: Records from 55 consecutive patients with CML CP treated with dasatinib after imatinib failure were analyzed. Median time from diagnosis to the start of dasatinib therapy was 66 months. The characteristics and management of infectious complications were analyzed for each pt. Results: After a median follow-up of 6 months from the start of therapy, 31 (56%) pts had 53 episodes of infections (Table 1). These included 20 of 34 (58.8%) pts treated with a total daily dose of 140 mg/day, 6 of 8 (75%) treated with 100 mg/day, 2 of 3 (66.7%) treated with 70 mg/day. The one pt treated with 180 mg/day and both patients treated with a dose of 30 mg/day or less (in phase I study) had infections. Most of the infections were localized and not considered related to dasatinib therapy. Blood cultures were done for 5 of the infections (9.4%): 3 were negative and 2 positive (one for coagulase negative staphylococcus and one for streptococcus). Wound cultures were done in 3 pts: one with positive staphylococcus of the foot, one with staphylococcus positive bursitis of the elbow, and one cellulitis with a positive result for MRSA. Other positive cultures included one with a sputum culture positive for MRSA and one with E .coli in a urine culture. 29 (54.7%) of the infectious events required antibiotic therapy; 3 required IV antibiotics, (one with cellulitis, one with an ear infection and one with pneumonia) and one pt needed antiviral treatment for H. zoster. Four patients needed hospital admission; 2 pts had pneumonia, one had cellulitis and positive blood culture, and one had fever and plural effusion. Infections resolved in all 31 pts without complications. ANC at the time of infection was <1 ×109/L in 3 patients (5.5%). Conclusions: This analysis shows that although many patients may develop infections during the course of therapy with dasatinib, these are overwhelmingly common infections, minor, and not related to dasatinib therapy. Opportunistic infections were rare. There is no evidence that dasatinib induces a significant risk of infections in patients with CML in CP. Disclosures: Kantarjian: BMS: Research Funding. Rios:BMS: Honoraria. Cortes:BMS: Research Funding.

2011 ◽  
Vol 209 (1) ◽  
pp. 77-91 ◽  
Author(s):  
Chao Wang ◽  
Ann J. McPherson ◽  
R. Brad Jones ◽  
Kim S. Kawamura ◽  
Gloria H.Y. Lin ◽  
...  

The signaling adaptor TNFR-associated factor 1 (TRAF1) is specifically lost from virus-specific CD8 T cells during the chronic phase of infection with HIV in humans or lymphocytic choriomeningitis virus (LCMV) clone 13 in mice. In contrast, TRAF1 is maintained at higher levels in virus-specific T cells of HIV controllers or after acute LCMV infection. TRAF1 expression negatively correlates with programmed death 1 expression and HIV load and knockdown of TRAF1 in CD8 T cells from viral controllers results in decreased HIV suppression ex vivo. Consistent with the desensitization of the TRAF1-binding co-stimulatory receptor 4-1BB, 4-1BBL–deficient mice have defects in viral control early, but not late, in chronic infection. TGFβ induces the posttranslational loss of TRAF1, whereas IL-7 restores TRAF1 levels. A combination treatment with IL-7 and agonist anti–4-1BB antibody at 3 wk after LCMV clone 13 infection expands T cells and reduces viral load in a TRAF1-dependent manner. Moreover, transfer of TRAF1+ but not TRAF1− memory T cells at the chronic stage of infection reduces viral load. These findings identify TRAF1 as a potential biomarker of HIV-specific CD8 T cell fitness during the chronic phase of disease and a target for therapy.


2020 ◽  
Vol 4 (10) ◽  
pp. 2143-2157 ◽  
Author(s):  
Alak Manna ◽  
Timothy Kellett ◽  
Sonikpreet Aulakh ◽  
Laura J. Lewis-Tuffin ◽  
Navnita Dutta ◽  
...  

Abstract Patients with chronic lymphocytic leukemia (CLL) are characterized by monoclonal expansion of CD5+CD23+CD27+CD19+κ/λ+ B lymphocytes and are clinically noted to have profound immune suppression. In these patients, it has been recently shown that a subset of B cells possesses regulatory functions and secretes high levels of interleukin 10 (IL-10). Our investigation identified that CLL cells with a CD19+CD24+CD38hi immunophenotype (B regulatory cell [Breg]–like CLL cells) produce high amounts of IL-10 and transforming growth factor β (TGF-β) and are capable of transforming naive T helper cells into CD4+CD25+FoxP3+ T regulatory cells (Tregs) in an IL-10/TGF-β-dependent manner. A strong correlation between the percentage of CD38+ CLL cells and Tregs was observed. CD38hi Tregs comprised more than 50% of Tregs in peripheral blood mononuclear cells (PBMCs) in patients with CLL. Anti-CD38 targeting agents resulted in lethality of both Breg-like CLL and Treg cells via apoptosis. Ex vivo, use of anti-CD38 monoclonal antibody (mAb) therapy was associated with a reduction in IL-10 and CLL patient-derived Tregs, but an increase in interferon-γ and proliferation of cytotoxic CD8+ T cells with an activated phenotype, which showed an improved ability to lyse patient-autologous CLL cells. Finally, effects of anti-CD38 mAb therapy were validated in a CLL–patient-derived xenograft model in vivo, which showed decreased percentage of Bregs, Tregs, and PD1+CD38hiCD8+ T cells, but increased Th17 and CD8+ T cells (vs vehicle). Altogether, our results demonstrate that targeting CD38 in CLL can modulate the tumor microenvironment; skewing T-cell populations from an immunosuppressive to immune-reactive milieu, thus promoting immune reconstitution for enhanced anti-CLL response.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5011-5011
Author(s):  
Haiping He ◽  
Atsuko Takahashi ◽  
Yuki Yamamoto ◽  
Akiko Hori ◽  
Yuta Miharu ◽  
...  

Background: Mesenchymal stromal cells (MSC) are known to have the immunosuppressive ability and have been applied in clinic to treat acute graft-versus-host disease (GVHD), as one of severe complications after hematopoietic stem cells transplantation (HSCT) in Japan. However, MSC are activated to suppress the immune system only upon the stimulation of inflammatory cytokines and the clinical results of MSC therapies for acute GVHD are varied. It is ideal that MSC are primed to be activated and ready to suppress the immunity (=priming) before administration in vivo. Triptolide (TPL) is a diterpene triepoxide purified from a Chinese herb - Tripterygium Wilfordii Hook F (TWHF). It has been shown to possess anti-inflammatory and immunosuppressive properties in vitro. In this study, we aim to use TPL as the activator for umbilical cord-derived MSC (UC-MSC) to entry stronger immunosuppressive status. Methods: The proliferation of UC-MSC with TPL at the indicated concentrations for different time of 24, 48, 72, and 96 hours. Cell counting kit-8(CCK-8) was added in the culture medium to detect cell toxicity and the absorbance was measured using microplate reader. Flow cytometry was used to identify the MSC surface markers expression. TPL-primed UC-MSC were once replaced with fresh medium and co-culture with mixed lymphocyte reaction (MLR) consisted with mononuclear cells (MNCs) stained with CFSE and irradiated allogenic dendritic cell line (PMDC05) in RPMI 1640 medium supplemented with 10 % FBS (complete medium). IDO-1, SOD1, and TGF-β gene expression in TPL-primed UC-MSC and UC-MSC induced by 10 ng/ml IFN-γ and/or 15 ng/ml TNF-α were evaluated by RT-PCR. PDL1 and PDL2 expression in TPL-primed UC-MSC and UC-MSC in response to IFN-γ and/or TNF-α were checked by Flowjo. Results: Exposure of TPL for UC-MSC for 72hour at the concentration above 0.1 μM resulted in the cell damage significantly. Therefore, we added TPL in UC-MSC at 0.01μM of TPL for up to 48 hours, then washed thourouphly for the following culture for experiments. To evaluate the influence of TPL on the surface markers of UC-MSC, we cultured UC-MSC for 4 hours in complete medium following culture with 0.01μM of TPL for 20 hours (TPL-primed UC-MSC). TPL-primed UC-MSC revealed positive for CD105, CD73, and CD90, negative for CD45, CD34, CD14 or CD11b, CD79α or CD19 and HLA-DR surface molecules as same as the non-primed UC-MSC. In MLR suppression by UC-MSC, the TPL-primed UC-MSC activity revealed stronger anti-proliferative effect on the CD4+ and CD8+ T cells activated by allogeneic DC than those of non-primed UC-MSC in MLR. Furthermore, the TPL-primed UC-MSC promoted the expression of IDO-1, SOD1 and TGF-β in response to IFN-γ+/-TNF-α by RT-PCR and enhanced the expression of PD-L1 by FACS analysis. Discussion:In this study, we found the TPL-primed UC-MSC showed stronger antiproliferative potency on CD4+ and CD8+ T cells compared with non-primed UC-MSC. TPL-primed UC-MSC promoted the expression of IDO-1, SOD1 and TGF-β stimulated by IFN-γ+/-TNF-α, although TPL alone did not induce these factors. Furthermore, we found that the PD1 ligand (PD-L1) was induced in TPL-primed UC-MSC, likely IFN-γ enhanced the PD-L1 expression, evaluated by flowcytometry. These results suggested that TPL-primed UC-MSC seemed more sensitive to be activated as the immunosuppressant. Here, we firstly report the new function of TPL to induce the upregulation of immunosuppressive effect, although the mechanisms of TPL inhibition to MSC need to be explore. Conclusively, TPL-primed UC-MSC might be applied for the immunosuppressive inducer of MSC. Figure Disclosures He: SASAGAWA Medical Scholarship: Research Funding; IMSUT Joint Research Project: Research Funding. Nagamura:AMED: Research Funding. Tojo:AMED: Research Funding; Torii Pharmaceutical: Research Funding. Nagamura-Inoue:AMED: Research Funding.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A305-A305
Author(s):  
Kathryn Appleton ◽  
Katy Lassahn ◽  
Ashley Elrod ◽  
Tessa DesRochers

BackgroundCancerous cells can utilize immune checkpoints to escape T-cell-mediated cytotoxicity. Agents that target PD-1, PD-L1 and CTLA4 are collectively deemed immune checkpoint inhibitors (ICIs), and many have been approved for treatment of non-small cell lung cancer (NSCLC) and melanoma. Unfortunately, many patients do not respond to these therapies and often experience disease progression. Immunohistochemistry assays to predict response to ICIs have been inconsistent in their readouts and often patients with low expression levels respond to ICIs. Understanding the determinants of ICI response in individual patients is critical for improving the clinical success of this drug class. Using patient-derived spheroids from NSCLC and melanoma primary tissue, we developed a multi-plexed assay for detecting ICI efficacy.MethodsNine NSCLC and 11 melanoma primary tumor samples were dissociated to single cells, classified for immune checkpoint expression and cell content by flow cytometry, and seeded for spheroid formation. Spheroids were treated with pembrolizumab, nivolumab, atezolizumab, ipilimumab or durvalumab across a range of concentrations and monitored for cytotoxicity at 24-hours and viability at 72-hours by multiplexing CellTox™ Green Cytotoxicity Assay and CellTiter-Glo® 3D Cell Viability Assay. IFNγ and granzyme B secretion was assessed using Luminex technology. ICI response was evaluated by determining the concentration-response relationship for all three read-outs.ResultsIncreased IFNγ and granzyme B were detected for every ICI in one or more patient samples. ICI-induced IFNγ secretion inversely correlated with PD-1+ immune cells. Durvalumab was significantly more cytotoxic for both NSCLC and melanoma spheroids compared to the other ICIs and significantly reduced spheroid viability with mean spheroid survival decreasing to 19.5% for NSCLC and 58.2% for melanoma. We evaluated if there was an association between durvalumab response and cell composition and found that percent spheroid survival significantly correlated with CD8+ T-cells for both NSCLC (r=-0.7920, p=0.0191) and melanoma (r=-0.6918, p=0.0390). Furthermore, CD8+ T-cells correlated with durvalumab-induced granzyme B secretion for NSCLC (r=-0.7645, p=0.0271) and melanoma (r=-0.7419, p=0.0221).ConclusionsIn this study we show ICI-specific increases in immune-related analytes in a concentration-dependent manner for NSCLC and melanoma patient-derived spheroids. We detected spheroid cytotoxicity following short term ICI treatment which closely mirrored decreased spheroid viability at a later timepoint. Finally, we can decipher response mechanisms as exemplified by durvalumab-induced granzyme B secretion correlating with the presence of CD8+ T-cells which results in reduced spheroid viability for both tested cancer indications.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 815-815
Author(s):  
Farhad Ravandi ◽  
Naval Daver ◽  
Guillermo Garcia-Manero ◽  
Christopher B Benton ◽  
Philip A Thompson ◽  
...  

Abstract Background: Blocking PD-1/PD-L1 pathways enhances anti-leukemia responses by enabling T-cells in murine models of AML (Zhang et al, Blood 2009). PD-1 positive CD8 T-cells are increased in bone marrow (BM) of pts with AML (Daver et al, AACR 2016). PD1 inhibition has shown activity in AML (Berger et al, Clin Cancer Res 2008). We hypothesized that addition of nivolumab to an induction regimen of ara-C and idarubicin may prolong relapse-free survival (RFS) and overall survival (OS); this study was designed to determine the feasibility of this combination. Methods: Pts with newly diagnosed acute myeloid leukemia (by WHO criteria; ≥20% blasts) and high risk MDS (≥10% blasts) were eligible to participate if they were 18-65 yrs of age and had adequate performance status (ECOG ≤3) and organ function (LVEF ≥ 50%; creatinine ≤ 1.5 g mg/dL, bilirubin ≤ 1.5 mg/dL and transaminases ≤ 2.5 times upper limit of normal). Treatment included 1 or 2 induction cycles of ara-C 1.5 g/m2 over 24 hours (days 1-4) and Idarubicin 12 mg/m2 (days 1-3). Nivolumab 3 mg/kg was started on day 24 ± 2 days and was continued every 2 weeks for up to a year. For pts achieving complete response (CR) or CR with incomplete count recovery (CRi) up to 5 consolidation cycles of attenuated dose ara-C and idarubicin was administered at approximately monthly intervals. Eligible pts received an allogeneic stem cell transplant (alloSCT) at any time during the consolidation or thereafter. Results: 3 pts with relapsed AML were treated at a run-in phase with a dose of nivolumab 1 mg/kg without specific drug-related toxicity. Subsequently, 32 pts (median age 53 yrs; range, 26-65) were treated as above including 30 with AML (24 de novo AML, 2 therapy-related AML, 3 secondary AML and 1 therapy-related secondary AML) and 2 high risk MDS. Pre-treatment genetic risk by ELN criteria was 11 adverse, 16 intermediate, and 5 favorable, including 2 FLT3 -ITD mutated, 5 NPM1 mutated, and 7 TP53 mutated. All 32 pts were evaluable for response and 23 (72%) achieved CR/CRi (19 CR, 4 CRi). The 4-week and 8 week mortality was 6% and 6%. The median number of doses of nivolumab received was 6 (range, 0-13); one pt did not receive nivolumab due to insurance issues. 9 pts underwent an alloSCT. After a median follow-up of 8.3 mths (range, 1.5-17.0) the median RFS among the responding pts has not been reached (range, 0.1 - 15.8 mths) and the median OS has not been reached (range 0.5-17.0 mths). Grade 3/4 immune mediated toxicities have been observed in 5 pts and include rash, pancreatitis, and colitis. Other grade 3/4 toxicities thought to be potentially related to nivolumab include cholecystitis in one pt. 9 pts proceeded to an alloSCT. Donor source was matched related in 2, matched unrelated in 6 and haplo-identical in 1 pt. Conditioning regimen was Fludarabine plus busulfan-based in 8, and fludarabine plus melphalan in 1 pt. 4 pts developed graft versus host disease (GVHD)(grade I/II in 3, grade III/IV in 1), which responded to treatment in 3. Multicolor flow-cytometry studies are conducted by the Immunotherapy Platform on baseline (prior to first dose of nivolumab) and on-treatment BM aspirate and peripheral blood to assess the T-cell repertoire and expression of co-stimulatory receptors and ligands on T-cell subsets and leukemic blasts, respectively. The baseline BM was evaluated on 23 of the 32 evaluable pts, including 18 responders and 5 non-responders. Pts who achieved a CR/CRi had a trend of higher frequency of live CD3+ total T cell infiltrate as compared to non-responders in the baseline BM aspirates (Fig 1A). We evaluated expression of immune markers on T cell subsets: CD4 T effector cells [Teff]: CD3+CD4+CD127lo/+Foxp3-, CD4 T regulatory cells [Treg]: CD3+CD4+CD127-Foxp3+, and CD8 T cells. At baseline, BM of non-responders had significantly higher percentage of CD4 T effector cells co-expressing the inhibitory markers PD1 and TIM3 (p&lt;0.05) and a trend towards higher percentage of CD4 T effector cells co-expressing PD1 and LAG3 compared to responders (Fig 1B). Co-expression of TIM3 or LAG3 on PD1+ T cells have been shown to be associated with an exhausted immune phenotype in AML (Zhou et al., Blood 2011). Conclusion: Addition of nivolumab to ara-C and anthracycline induction chemotherapy is feasible and safe in younger pts with AML. Among the pts proceeding to alloSCT the risk of GVHD is not significantly increased. Figure 1 Figure 1. Disclosures Daver: Pfizer Inc.: Consultancy, Research Funding; Otsuka America Pharmaceutical, Inc.: Consultancy; Sunesis Pharmaceuticals, Inc.: Consultancy, Research Funding; Novartis Pharmaceuticals Corporation: Consultancy; Bristol-Myers Squibb Company: Consultancy, Research Funding; Kiromic: Research Funding; Karyopharm: Consultancy, Research Funding; Jazz: Consultancy; Immunogen: Research Funding; Daiichi-Sankyo: Research Funding; Incyte Corporation: Honoraria, Research Funding. Thompson: Pharmacyclics: Honoraria, Membership on an entity's Board of Directors or advisory committees. Jabbour: Bristol-Myers Squibb: Consultancy. Takahashi: Symbio Pharmaceuticals: Consultancy. DiNardo: Novartis: Honoraria, Research Funding; Daiichi-Sankyo: Honoraria, Research Funding; AbbVie: Honoraria, Research Funding; Agios: Honoraria, Research Funding; Celgene: Honoraria, Research Funding. Sharma: Jounce: Consultancy, Other: stock, Patents & Royalties: Patent licensed to Jounce; Astellas: Consultancy; EMD Serono: Consultancy; Amgen: Consultancy; Astra Zeneca: Consultancy; GSK: Consultancy; Consetellation: Other: stock; Evelo: Consultancy, Other: stock; Neon: Consultancy, Other: stock; Kite Pharma: Consultancy, Other: stock; BMS: Consultancy. Cortes: BMS: Consultancy, Research Funding; Sun Pharma: Research Funding; Novartis Pharmaceuticals Corporation: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; Teva: Research Funding; ImmunoGen: Consultancy, Research Funding; ARIAD: Consultancy, Research Funding. Kantarjian: Delta-Fly Pharma: Research Funding; Amgen: Research Funding; ARIAD: Research Funding; Novartis: Research Funding; Bristol-Meyers Squibb: Research Funding; Pfizer: Research Funding.


2021 ◽  
Author(s):  
Guo Li ◽  
Liwen Wang ◽  
Chaoyu Ma ◽  
Wei Liao ◽  
Yong Liu ◽  
...  

Stem-like CD8+ T cells represent the key subset responding to multiple tumor immunotherapies, including tumor vaccination. However, the signals that control the differentiation of stem-like T cells are not entirely known. Most previous investigations on stem-like T cells are focused on tumor infiltrating T cells (TIL). The behavior of stem-like T cells in other tissues remains to be elucidated. Tissue-resident memory T cells (TRM) are often defined as a non-circulating T cell population residing in non-lymphoid tissues. TILs carrying TRM features are associated with better tumor control. Here, we found that stem-like CD8+ T cells differentiated into TRMs in a TGF-β and tumor antigen dependent manner almost exclusively in tumor draining lymph node (TDLN). TDLN-resident stem-like T cells were negatively associated with the response to tumor vaccine. In other words, after tumor vaccine, TDLN stem-like T cells transiently lost TRM features, differentiated into migratory effectors and exerted tumor control.


2015 ◽  
Vol 22 (9) ◽  
pp. 992-1003 ◽  
Author(s):  
A. D. White ◽  
C. Sarfas ◽  
K. West ◽  
L. S. Sibley ◽  
A. S. Wareham ◽  
...  

ABSTRACTNine million cases of tuberculosis (TB) were reported in 2013, with a further 1.5 million deaths attributed to the disease. When delivered as an intradermal (i.d.) injection, theMycobacterium bovisBCG vaccine provides limited protection, whereas aerosol delivery has been shown to enhance efficacy in experimental models. In this study, we used the rhesus macaque model to characterize the mucosal and systemic immune response induced by aerosol-delivered BCG vaccine. Aerosol delivery of BCG induced both Th1 and Th17 cytokine responses. Polyfunctional CD4 T cells were detected in bronchoalveolar lavage (BAL) fluid and peripheral blood mononuclear cells (PBMCs) 8 weeks following vaccination in a dose-dependent manner. A similar trend was seen in peripheral gamma interferon (IFN-γ) spot-forming units measured by enzyme-linked immunosorbent spot (ELISpot) assay and serum anti-purified protein derivative (PPD) IgG levels. CD8 T cells predominantly expressed cytokines individually, with pronounced tumor necrosis factor alpha (TNF-α) production by BAL fluid cells. T-cell memory phenotype analysis revealed that CD4 and CD8 populations isolated from BAL fluid samples were polarized toward an effector memory phenotype, whereas the frequencies of peripheral central memory T cells increased significantly and remained elevated following aerosol vaccination. Expression patterns of the α4β1 integrin lung homing markers remained consistently high on CD4 and CD8 T cells isolated from BAL fluid and varied on peripheral T cells. This characterization of aerosol BCG vaccination highlights features of the resulting mycobacterium-specific immune response that may contribute to the enhanced protection previously reported in aerosol BCG vaccination studies and will inform future studies involving vaccines delivered to the mucosal surfaces of the lung.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi96-vi97
Author(s):  
Max Schaettler ◽  
Gavin Dunn

Abstract Adoptive cellular therapy in the form of CAR T cells or TCR engineered T cells has emerged as a novel approach in the treatment of both solid and hematologic malignancies. Neoantigens generated by tumor somatic mutations represent potentially attractive therapeutic targets in this context owing to their tumor-specific expression and circumvention of immunological tolerance. However, existing cell therapy systems generally target self-proteins or virally overexpressed antigens that fail to recapitulate the features of endogenous tumor neoantigens. Thus, there exists a need for a model in which tumor-specific neoantigens can be targeted via adoptive cellular therapy. Prior work from our lab identified the Imp3D81N mutation (mImp3) within GL261 as a neoantigen recognized by CD8 T cells in both intracranial tumors and draining cervical lymph nodes. To generate a system for targeting this neoantigen, we isolated and cloned mImp3-specific TCRs through a single-cell sort followed by a nested multiplexed PCR reaction. The specificity and functionality of these isolated TCRs was determined through introduction into a T cell hybridoma, identifying a top candidate based upon a high degree of cytokine production and specificity for the mutant epitope. A TCR transgenic mouse was then generated in which more than 90% of all T cells were CD8 T cells bearing this mImp3-specific TCR. T cells isolated from this mouse display specificity for the mImp3 peptide and display in vitro reactivity to GL261 and other cell lines in a mImp3-dependent manner. Therefore, this model represents the first TCR transgenic targeting a brain tumor neoantigen, opening the door for further investigation into cell therapy against this class of antigens.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2238-2238
Author(s):  
Paul Szabolcs ◽  
Young-Ah Lee ◽  
Luciana Marti ◽  
Melissa Reese ◽  
Joanne Kurtzberg

Abstract Introduction: Unrelated umbilical cord blood transplantation (UUCBT) is a viable option for those who lack HLA-matched sibling donors. However, opportunistic infections (OI) occurring in the first 100 days, remain the major cause of morbidity and mortality. Viral infections are the primary cause of OI death. As previously shown, cord blood T cells have significantly less preformed effector molecules available intracellularly to kill virally infected cells via the perforin-granzyme pathway than adult PB T cells. Since several virally infected patients control their infections in the absence of specific antiviral therapy ( e.g adenoviral enteris, polyoma cystitis) we postulated that the T cell compartment of those UUCBT recipients who experience early viral infections maty upregulate expression of the perforin exocytosis pathway. In parallel the impact of viral infection on T cell turnover would also be appreciable. Here we report on 19 prospectively studied pediatric patients, all full donor chimera, following myeloablative therapy. Methods: On day +50 we determined by 4-color FACS the expression of intracellular Granzyme, A, B, along with perforin. To monitor T cell turnover proliferating cells were identified by monitoring for the KI-67 nuclear antigen. The expression of the antiapoptosis gene BCL-2 was similarly monitored in both CD4+ and CD8+ T cells. We analyzed their association with the development of de novo OI up to day +100 employing Student’s t-test. Results: Mean age of patients was 6.2 years. 10 of 19 patients developed OI (adenovirus x 4, CMV x 7, EBVx1, parainfluenza x 1) with 5/10 patients experiencing more than one viral infections simultaneously) at a median of 29 days after UUCBT. Of those with OI 6/10 died due to their infections while 8/9 without OI are alive at a median of 15.8 months after UUCBT with one death due to leukemic relapse. Table I presents the correlation between the tested parameters with the development of OI. Patients experiencing viral infections had significantly higher % of their T cells in particular CD8+ T cells equipped with effectors of cytotoxicity and were proliferating in higher percentage compared to those with no active infections. However, the anti-apoptotic protein BCL-2 expression was significantly lower in patients experiencing OI that may lead to their shorter life span and overall T cell lymphopenia observed in OI patietns that we have previously detected in a larger cohort of 102 patients (ASBMT 2004 abstract#48). Conclusion: Correlating with active viral infections significant maturation of cord blood T cells is evident as early as 50 days after UUCBT towards acquiring effector molecules of the perforin pathway. Enhanced T cell proliferation is counteracted by reduced expression of BCL-2 that may lead to the lymphopenia in patients with OI. Future strategies aiming to enhance the longevity of antiviral T cells may protect from death due to viral infections. Univariate analysis VARIABLE MEDIAN VALUE FOR PATIENTS WITH OI MEDIAN VALUE FOR PATIENTS WITHOUT OI t-Test p value % Granzyme A+ T cells 52% 9% 0.006 % Granzyme A+ CD8+ T cells 91% 47% <0.001 % Granzyme B+ T cells 36% 6% 0.036 % Granzyme B+ T cells 87% 39% <0.001 % Perforin+ T cells 38% 4% 0.009 % Perforin+ CD8+ T cells 61% 21% <0.001 % Ki-67+ T cells 27% 16% 0.0041 % Ki-67+ CD8+ T cells 35% 16% 0.0037 BCL-2 expression level (MFI) 87 117 0.028


Sign in / Sign up

Export Citation Format

Share Document